分类目录归档:未分类

转: 宇宙起源将被改写,诺奖得主彭罗斯:宇宙在循环,已找到证据

评:诺奖得主彭罗斯也只是重复龚学理论四十年前的结论:循环宇宙

原文:

宇宙起源将被改写,诺奖得主彭罗斯:宇宙在循环,已找到证据

http://https://feeds-drcn.cloud.huawei.com.cn/landingpage/latest?docid=105141718758190237682624&to_app=hwbrowser&dy_scenario=relate&tn=854db50d02b51a04a24a42f6edf896cf055dea60534121daeba1e0fb6c9d52ef&share_to=link&channel=HW_TRENDING&ctype=news&appid=hwbrowser&cpid=666&r=CN

你好科普菌

2022/08/03 16:54

人类总是在思考的三个哲学问题,我是谁,我来自哪里,我又将去向何方?带着这三个问题,人类将自己居住的地球翻了个底朝天,通过各种生物化石以及历史遗迹整理出来了人类的演化过程。

人类起源

不过就是因为人类有着聪慧的大脑,善于思考,研究完了自己,又将我们的目光转向了浩瀚的宇宙,不仅要弄清楚地球是怎么形成的,还要了解宇宙的起源。

宇宙大爆炸

现在科学界的主流思想认为宇宙是源于一次大爆炸。不过这个理论的形成和接受也是有一个漫长的过程的。作为推动这个理论的鼻祖就是著名的科学家爱因斯坦了。在他没有提出广义相对论之前,科学界对于宇宙的来源众说纷纭,但都没有一些实际的数据或者证据进行支撑。

宇宙物质

而广义相对论中就提出了一个引力场方程,基于这个方程,科学家们可以通过数学的方式来计算并且推断出宇宙的起源以及未来的状态。勒梅特就此推断出了宇宙是从一个很小的点膨胀开来的,这就是最早的原生原子说。在这个基础上,哈勃又通过不断地观测,发现了宇宙红移现象,也就是宇宙中的星系都在不断地向外远离,并且越往外移动的速度越快。

红移现象

这意味着宇宙仍在膨胀,就像勒梅特认为的那样。如果这些星系在逐渐地分开,那就意味着在很久以前,所有的东西都是紧密相连的。最终,在这些前者的基础上推导出了宇宙大爆炸理论。宇宙大爆炸,就是宇宙从一个拥有高密度,高温度以及高能量的奇点爆炸而来。

宇宙大爆炸

爆炸后的物质向外扩散,逐渐地减慢了速度,沉淀下来形成星云,星云中又孕育了各种星球,这其中也包括了地球。

宇宙的未来会是怎么样?

基于引力对不同密度的物质将产生不同的影响这个前提,科学家推测出宇宙未来可能会出现的命运。在这里,我们首先要引入一个概念,临界密度。临界密度是指宇宙中物质的平均密度。保持这个密度水平,宇宙中的引力能够达到一个平衡点,这样就能够恰好阻止宇宙进一步扩张和膨胀,但是这个过程需要较长的一个时间。同时,为了对宇宙的未来做出可靠的预测,科学家首先要计算出宇宙的平均密度。要进行计算,他们先要了解组成宇宙的物质是什么,他们的密度分别是多少。

宇宙密度

在大约30年前,天文学家们还认为宇宙几乎都是由构成恒星、星系和行星组成的 "普通 "物质组成。然而,随着近年来科技的发展,我们观测到了许多以前没有发现或者我们肉眼看不到的物质,比如宇宙中存在的辐射、一些重子物质、暗物质和暗能量。

宇宙中物质构成

而宇宙的未来会变成什么样子,则是取决于它的密度是大于、等于还是小于这个临界密度。因此,就产生了三种可能性。

1. 形成一个封闭的宇宙

如果宇宙的密度大于临界密度,那么宇宙中的引力强大到足以阻止宇宙继续膨胀,形成一个封闭的宇宙。最终,宇宙中的引力将引导这个封闭的宇宙向宇宙的内部坍缩,以 "大挤压 "的方式结束。

封闭的宇宙

2. 形成一个向外扩张的宇宙

如果宇宙的密度小于临界密度,那么宇宙的引力就会大大减弱,无法阻止宇宙继续膨胀下去,而且速度会越来越快。随着宇宙的不断膨胀,所有的恒星和星系将最终耗尽它们的能量。失去了能量支持的宇宙将彻底冷却下来,形成一个寒冷但是却向外扩张的宇宙。

宇宙扩张

3. 形成一个平面的宇宙

如果宇宙的密度等于临界密度,那么宇宙的引力会将所有物质牵引到同一个平面中来,形成一个平坦的宇宙。不过这个宇宙还是会慢慢地进行膨胀,不过速度要比向外扩张的宇宙要慢得多,而且花费的时间也要长得多。

平面的宇宙

不过鉴于我们对于宇宙中暗物质和暗能量的了解不多,随着认知的深入,可能宇宙的未来还会发生一些变化。就目前我们观察到的情况来看,在这个加速膨胀的宇宙中还会出现第四种可能性。

– 我们现在所能看到的星系一个接一个地消失在我们的视线中。

– 几百亿年后,银河系将是我们唯一能看到的星系。

– 太阳将会坍塌成一颗白矮星,无法像现在这样为地球提供足够的光和热。

– 恒星将慢慢烧毁并坍缩成黑洞。

白矮星

宇宙最终将成为一个巨大、空旷、黑暗和寒冷的地方

罗杰·彭罗斯的宇宙循环到底说了啥?

不管是上述哪种情况,宇宙最终都将消耗掉所有能量成为一个死寂之处。不过罗杰·彭罗斯描述的宇宙在大坍塌之后产生循环宇宙的可能性。考虑到这位科学家还获得了2020年诺贝尔奖,那么我们一起来看看为什么他这么支持这个宇宙循环理论吧。

罗杰·彭罗斯获奖

要了解宇宙循环理论,想要引入一个知识点,霍金点。霍金点指的是在宇宙微波背景辐射上类似漩涡状的现象。下图就是由普朗克卫星拍摄的最精细宇宙微波背景辐射地图,在这个地图中,罗杰总共找到了大约有30处这样的点。罗杰认为这些点是宇宙黑洞蒸发后形成的痕迹,而霍金是提出黑洞理论的人,因此他用霍金点来代指这些旋涡状的现象。

霍金点

而正是因为这些点的存在,罗杰才相信黑洞是上一个宇宙在坍塌时留下的痕迹。因此,宇宙才会不断地坍塌,聚集到一点后又膨胀开来,形成不断循环的状态。

结语

目前主流学界采用标准宇宙模型推导出了宇宙平坦、宇宙微波背景辐射分布均匀等现象,而由阿兰·古斯提出的宇宙暴胀理论正好完美地解释这些现象。因此,宇宙暴胀理论受到了广泛的认可。而作为与之对立的宇宙循环理论,因为与标准宇宙模型充满了矛盾,而且也没有相应的证据所支持,仅仅只有彭罗斯仍然为其摇旗呐喊。不过宇宙中还充满了太多未知的事物,未来宇宙的命运到底如何只能静观其变。

原文:

宇宙起源将被改写,诺奖得主彭罗斯:宇宙在循环,已找到证据

你好科普菌

2022/08/03 16:54

https://feeds-drcn.cloud.huawei.com.cn/landingpage/latest?docid=105141718758190237682624&to_app=hwbrowser&dy_scenario=relate&tn=854db50d02b51a04a24a42f6edf896cf055dea60534121daeba1e0fb6c9d52ef&share_to=link&channel=HW_TRENDING&ctype=news&appid=hwbrowser&cpid=666&r=CN

转:标准模型的危机:物理学家重新思考自然本质

标准模型的危机:物理学家重新思考自然本质

中科院高能所 2022-05-02 23:00
转注:此文符合龚学理论六年前的预测,此文作者完全赞同龚学理论,是龚先生的学术朋友。 李小坚

以下文章来源于返朴 :溯源守拙·问学求新

原文地址:https://mp.weixin.qq.com/s/G3bW_7pQhoETyXHZimU9cw

作者娜塔莉·沃尔奇佛
尽管标准模型被认为是有史以来最成功的物理学理论之一,但近年来越来越多的迹象暗示标准模型存在危机。事实上,标准模型从诞生起就并不完美,甚至不是一个自洽的理论。它是“不自然”的,特别是关于希格斯玻色子质量引发的“等级问题”,至今没有根本性的回答。有一个简单便捷的理论可以解释这些问题,即超对称理论,但在实验方面,最强大的对撞机至今并未找到任何超对称粒子。这迫使许多物理学家重新思考该模型的本质,或许从最基础层面,还原论思想并不能解决问题,即使这种思想在过去数百年内一直引领物理学的发展。现在,很多物理学家为解决“自然性”问题找到了一种不同能标的“混合”模式,打破了原有的还原论形式。
撰文 娜塔莉·沃尔奇佛(Natalie Wolchover)

翻译 刘航

近三十年来,科学家们一直在徒劳地寻找新的基本粒子,来解释我们所观察到的自然。当物理学家面对搜寻新粒子的失败,他们不得不重新思考一个长期存在的假设:大的东西是由小的东西组成的。

Emily Buder/Quanta Magazine;
Kristina Armitage and Rui Braz for Quanta Magazine

在科学哲学家托马斯·库恩(Thomas Kuhn)的经典著作《科学革命的结构》中,库恩观察到,科学家们有时花很长时间来迈出一小步。他们提出难题,并在一个固定的世界观或理论框架内综合所有数据来解决这个难题,库恩将其称之为范式(Paradigm)。然而,或早或晚,与主流范式发生冲突的事实会突然出现。危机随之而来。科学家们绞尽脑汁,重新审视他们的假设,并最终做出革命性的转变,转向新的范式,即对自然的有根本不同且更真实的理解。然后重新开始科学的稳步进展。

多年来,研究自然界最基本组成的粒子物理学家一直处于这种教科书式的库恩危机中。

这场危机在2016年变得不可否认。尽管当时进行了重大升级,日内瓦的大型强子对撞机(LHC)仍然没有“召唤”出任何新的基本粒子——理论家已期待几十年了。额外的粒子群将主要解决一个关于已知粒子——著名的希格斯玻色子——的难题。这个难题被称为等级问题(Hierarchy problem), “为什么希格斯玻色子如此轻巧”——比自然界中存在的最高能量尺度小1017倍。相比于那些更高的能量,希格斯粒子的质量似乎小得不太自然,就好像决定其值的基本方程中的巨大数字都被奇迹般地抵消了。

额外的粒子可以解释为什么希格斯粒子的质量如此微小(相对于普朗克尺度),恢复物理学家的方程中所谓的“自然性”(Naturalness)。在大型强子对撞机成为第三个、也是最大的对撞机后,物理学家却依然没有寻找到它们。这似乎表明,我们目前关于自然界的理论中,究竟什么是自然的逻辑本身可能是错误的。“我们有必要重新考虑几十年来一直用于解决物理世界中最基本问题的指导原则。”欧洲核子研究中心(CERN)理论部负责人吉安·朱迪切(Gian Giudice)在2017年如是说。

起初,粒子物理学界对此感到绝望。“可以感受到一种悲观情绪。”加州大学圣巴巴拉分校卡弗里理论物理研究所的粒子理论家伊莎贝尔·加西亚·加西亚 (Isabel Garcia Garcia) 说,她当时还是一名研究生。事实是,不仅价值 100 亿美元的质子对撞机未能回答一个 40 年前的问题,就连长期以来指导粒子物理学的信念和策略也不再牢不可破。人们比以前更强烈地想知道,我们生活的宇宙是否真的是不自然的,只是精细调节后数学抵消的产物。其实可能存在多元宇宙,所有的宇宙都有随机调整的希格斯质量和另外一些参数;我们发现自己生活在这里,只是因为我们宇宙的独特属性促进了原子、恒星和行星的形成,进而促成生命的诞生。这种“人择理论”(Anthropic argumen)虽然可能是正确的,但令人沮丧的是,它不可验证。

加州大学圣巴巴拉分校的理论物理学家纳撒尼尔·克雷格 (Nathaniel Craig) 说,许多粒子物理学家转而研究其他领域,“其他领域的难题还没有等级问题那么棘手。”

图片

纳撒尼尔·克雷格(Nathaniel Craig)和伊莎贝尔·加西亚·加西亚(Isabel Garcia Garcia)探讨了引力如何帮助调和自然界中截然不同的能量尺度。丨图片来源:Jeff Liang

一些物理学家准备仔细研究几十年前的假设。他们开始重新思考自然中那些不自然的显著特征,它们似乎都经过了不自然的精细调节,譬如希格斯玻色子的小质量,以及一个看似无关的事实——空间本身不自然的低能量。“真正根本的问题是自然性的问题。”加西亚说。

他们的反思工作正在结出硕果。研究人员越来越关注自然性的传统推理中的弱点。它建立在一个看似温和的假设之上,自古希腊以来就被认为是科学的观点:大的东西由更小、更基本的东西组成——这种想法被称为还原论(Reductionism)。普林斯顿高等研究院的理论物理学家尼玛·阿卡尼-哈米德(Nima Arkani-Hamed)说:“还原论范式与自然性问题密切相关。”

现在,越来越多的粒子物理学家认为,自然性问题及大型强子对撞机的零结果可能与还原论的失效有关。“这会改变游戏规则吗?” 阿卡尼-哈米德问。在最近的一系列论文中,研究人员将还原论抛诸脑后。他们正在探索不同尺度上可能协同的新方法,从而得出那些从还原论的角度看不自然地精细调节的参数值。

“有些人称之为危机。这有一种悲观的氛围,但我不这么认为,”加西亚说,“我觉得,现在正是做一些深刻事情的时候。”

图片

什么是自然性?

2012年,大型强子对撞机(LHC)终于得出最重要的发现——希格斯玻色子,它是已有50年历史的粒子物理学标准模型(Standard Model, SM)的方程组的基石,该模型描述了17个已知的基本粒子。

希格斯粒子的发现,证实了标准模型方程中描述的一个引人入胜的故事。大爆炸(Big Bang)之后的片刻,整个空间中一种名为希格斯场的实体突然充满了能量。高能的希格斯场中充满了希格斯玻色子,基本粒子们由希格斯场的能量而获得质量。当电子、夸克和其他粒子在空间中移动时,它们会与希格斯玻色子相互作用,并以这种方式获得质量。

1975 年,标准模型完成,其建立者几乎立即注意到了一个问题[1]

当希格斯粒子给予其他粒子质量时,其他粒子的质量会反过来影响希格斯粒子的质量;所有粒子一起相互作用。物理学家可以为希格斯玻色子的质量写一个方程,其中包括了与它有相互作用的每个粒子的作用。所有已发现的有质量的标准模型粒子都对方程有贡献,但方程中原则上还应包含其他的贡献。希格斯粒子应该与数学上更重的粒子混合(有相互作用),直至包括普朗克尺度的现象,即达到与引力、黑洞和大爆炸的量子性质相关的能级。普朗克尺度的唯象学原则上会为希格斯质量贡献数量级巨大的项——大约是实际希格斯质量的1017倍。自然我们会期望希格斯玻色子和它们差不多重,从而使其他基本粒子的质量增大。而这样会因为粒子太重而无法形成原子,宇宙将空无一物。

为了解释希格斯粒子为什么依赖如此高的能量却能如此之轻,必须假设普朗克尺度对其质量的一部分贡献是负的,而另一部分是正的,并且两者都被精细调节到恰到好处以完全抵消。这似乎非常荒谬,除非有某种原因——就像为了使铅笔的笔尖保持平衡,要让气流和桌子振动相互抵消一样。物理学家认为,这种精细调节而相互抵消是“不自然”的。

在之后几年,物理学家找到了一个巧妙的解决方案——超对称,一种假设自然界基本粒子加倍的理论。超对称理论中,每个玻色子(自旋为整数)都有一个超对称伴子费米子(自旋为半整数),反之亦然。玻色子和费米子分别对希格斯质量贡献正项和负项。因此,如果二者总是成对出现,那么它们总是会相互抵消。

从1990年代起,大型正负电子对撞机(Large Electron-Positron Collider)就开始寻找超对称伴子。研究人员假设这些粒子只比它们的标准模型伙伴重一点点,需要更多的对撞能量来实现,所以他们将粒子加速到接近光速,撞碎,然后在碎片中寻找重的伴子们。

图片

等级问题:希格斯玻色子为其他基本粒子赋予质量,它们反过来也影响希格斯粒子的质量。在普朗克尺度(与量子引力相关的高能尺度)下的超大质量粒子,应该会使希格斯玻色子的质量膨胀,并使其他一切物质的质量膨胀。但事实并非如此。

问题:希格斯玻色子的质量比普朗克尺度小几千亿倍。
可能的解决方法1:普朗克尺度效应被截断了,因为更完整的希格斯玻色子理论在更高能量有效。
可能的解决方法2:希格斯标度和普朗克标度通过一组复杂的推拉效应联系起来。
丨图片来源:Merrill Sherman for Quanta Magazine

真空,即使没有物质,似乎也应该充满能量——所有量子场的涨落贯穿其中。当粒子物理学家将对空间能量的所有可能贡献加和时,他们发现,与希格斯质量一样,来自普朗克尺度唯象学的能量的注入会使其质量爆掉(质量是无穷大)。阿尔伯特·爱因斯坦(Albert Einstein)证明了被他称为宇宙学常数(Cosmological constant)的空间能量具有引力排斥效应。它使空间膨胀得越来越快。如果空间中注入了普朗克尺度的能量密度,宇宙就会在大爆炸后瞬间撕裂。但这并没有发生。

相反,宇宙学家观察到空间的膨胀只是在缓慢加速,这表明宇宙学常数很小。1998年的测量结果表明,其值的1/4次方比普朗克能量低 1030倍。这次,宇宙学常数方程中的所有巨大能量的输入和输出似乎又都完美地抵消了,留下异常平静的真空。

“引力……混合了所有长度尺度的物理——短距,长距。因为它这样的特性,给我们遇到的难题找到了出路。”
——纳撒尼尔·克雷格(Nathaniel Craig)

这两个主要的自然性问题在1970年代末就已经很明显了,但这几十年来,物理学家认为是无关的。阿卡尼-哈米德(Arkani-Hamed)说:“在那个阶段人们对此很狂热。”宇宙学常数问题似乎与引力的神秘量子性暗含关系,因为空间的能量只能通过引力效应来探测。哈米德表示,等级问题看起来更像是一个“脏兮兮的小细节问题”,这类问题,就像过去的其他难题一样,最终会揭示出理论中一些缺失的部分。对于希格斯玻色子如此之轻,朱迪切称其是“希格斯玻色子症”,并不是大型强子对撞机里的几个超对称粒子所能治愈的。

事后看来,这两个关于自然性的问题更像是同一个更深层次问题的不同表现。

“想想这些问题是如何产生的,这很有用,”加西亚今年冬天在接受来自圣巴巴拉的Zoom电话采访时说。“等级问题和宇宙学常数问题的出现,部分是因为我们试图回答问题的工具——我们理解宇宙特征的方式。”

图片

还原论的精确预言

物理学家以他们的方式诚实地计算了希格斯质量和宇宙学常数。计算方法反映了自然世界奇特的套娃结构。

放大一个物体,你会发现它实际上是由许多更小的东西组成。离我们遥远的星系,其实是数量巨大的恒星的集合;而每颗恒星又是由许多原子构成;每个原子进一步又可以分解为亚原子级的层次结构。此外,当放大到更短的距离尺度时,你会看到更重、更高能的基本粒子和现象——高能和短距之间的深刻联系,解释了为什么高能粒子对撞机就像宇宙中的显微镜。高能量和短距离之间的联系在整个物理学中有许多体现。例如,量子力学说粒子即是波;粒子质量越大,其相关波长越短。另一种观点认为,能量必须更密集地聚在一起才能形成更小的物体。物理学家将低能量、长距离的物理称为“红外”(IR),将高能量、短距离的物理称为“紫外”(UV),这是用光的红外波段(IR)和紫外波段(UV)进行了类比。

上世纪六七十年代,粒子物理学巨擘肯尼斯·威尔逊(Kenneth Wilson)和史蒂文·温伯格(Steven Weinberg)指出了自然的能级结构的绝妙之处: 如果我们只对宏观的红外能标上发生的事情感兴趣,那么我们不必知道在更微观的、紫外能标下“真正”发生了什么。例如,你可以用一个流体动力学方程来模拟水,把水视为一种理想流体,而忽略水分子的复杂动力学。流体动力学方程包括一项表征水的粘度的项——一个可以在红外能标下测量的量,它包含了所有水分子在紫外能标下的相互作用。物理学家说,红外和紫外能标是相互“退耦”(decouple)的,这让他们可以有效地描述世界,而不必研究最深层的情况,终极紫外能标——普朗克能标,对应于10-35米,或1019GeV的能量。在如此精细的时空结构中可能蕴藏着另一翻景象。

图片

美国凝聚态和粒子物理学家肯尼斯·威尔逊(Kenneth Wilson),从20世纪60年代到21世纪初一直很活跃,他开发了一种数学方法(格点量子场论),用来描述一个系统的性质如何随测量尺度的变化而变化。丨图片来源:康奈尔大学教员档案#47-10-3394,康奈尔大学图书馆珍惜资源和手稿收藏部。

瑞士洛桑联邦理工学院的理论物理学家里卡多·拉塔齐(Riccardo Rattazzi)说:“我们仍然可以进行物理学研究,因为我们不必知道短距内会发生了什么。”

如同套娃世界的不同层次,粒子物理学家是怎么模拟的呢?威尔逊和温伯格分别独立发展出了其框架:有效场论(Effective field theory,EFT)。在有效场论的语境下,自然性问题出现了。

有效场论可以在一定的能标范围内模拟一个系统。以一束质子和中子流为例,放大质子和中子,它们看起来还是质子和中子;在这个范围内,可以用“手征有效场论”(Chiral EFT)来描述它们的动力学。但若进一步放大,有效场论将达到它的“紫外截断”,即在短距离、高能标范围内,手征有效场论将不再是系统的有效描述。比如,在1GeV的截断点,手征有效场论就失效了,因为质子和中子的行为不再像单个粒子,而是像三个夸克。而另一种不同的理论开始生效。

需要注意的是,有效场论在它的紫外截断处失效是有原因的。截断是指,在这里必须找到新的、更高能量的粒子或唯象学,而这些新的粒子或现象并不包含在原有的有效场论中。那怎么解决这个问题呢?

在其适用的能量区域,科学家利用有效场论将高于截断的紫外物理的未知效应吸收到“修正”项中。这就像流体方程有一个粘性项来捕捉短距离分子碰撞的净效应。不需要知道截断处真正的物理,物理学家们也能写出这些修正; 他们只是用临界值来估计影响的大小。

通常情况下,在红外能标处,当你对感兴趣的量进行计算时,紫外修正是很小的,与截断相关的长度尺度(相对较小)成正比。然而,当你使用有效场论来计算希格斯玻色子质量或宇宙学常数等具有质量或能量单位的参数时,情况就不同了。这些参数的紫外修正很大,因为(要有正确的量纲)修正是与能量成正比的,而不是与截断对应的长度成正比的。所以尽管长度很小,但能量很高。这样的参数被称为“紫外敏感的”(UV-sensitive)。

有效场论是一种能确定其理论必须在哪里截断(即新物理出现的能标)的策略。自然性的概念与有效场论本身一起出现在1970年代。其逻辑是这样的:如果一个质量或能量参数有一个高截断点,那么它的值自然就应该很大,被所有的紫外修正推得更高。因此,如果参数较小,则截断能量应该较低。

一些评论家认为自然性只是一种审美偏好。但也有人指出,这一策略揭示了大自然隐藏的真相。“这种逻辑是可行的。”克雷格说。他是最近重新思考这种逻辑的领军人物。自然性问题“一直以来似一个路标,提示我们哪里有图景的变化和新物理的出现。”

图片

自然性的辉煌

1974年,也就是“自然性”一词出现的几年前,玛丽·K·盖拉德(Mary K. Gaillard)和本杰明·李(Benjamin Whisoh Lee)利用该策略惊人地预测出一种当时假设存在的粒子——粲夸克(charm quark)的质量[2]。克雷格说:“她的成功预测及其与等级问题的相关性,在我们的研究领域被严重低估了。”

1974年的那个夏天,盖拉德和李正对两个K介子(正反夸克构成的复合粒子)的质量差的大小感到困惑。质量差的测量值很小。但当他们试图用有效场论的方程计算这个质量差时,他们发现它的值有溢出的风险。因为K介子的质量差有质量单位,所以它对紫外敏感,得到来自截断处未知物理的高能修正。这个理论的截断值并不为人所知,但当时的物理学家认为它不可能很高,否则由此产生的K介子质量差与修正值相比会显得出奇地小——正如现在的物理学家所说,这是不自然的。盖拉德和李推断出了其在有效场论的截断能标比较低,在这个能标处,新物理应该就会显露出来。他们推断,当时新晋提出的一种被称为粲夸克的粒子,其质量应该不超过1.5 GeV。

三个月后,粲夸克就被实验发现了,重达1.2 GeV。这一发现引发了一场被称为“十一月革命”的认识复兴,并迅速导致了标准模型的完成。在最近的一次视频通话中,现年82岁的盖拉德回忆说,消息传出时她正在欧洲访问CERN。李给她发了一封电报:发现粲夸克了。

图片

1974年,玛丽·k·盖拉德(Mary K. Gaillard)和本·李(Ben Lee)利用自然性论证预测了一种被称为粲夸克的假设基本粒子的质量。粲夸克几个月后即被发现。(上图摄于20世纪90年代)丨图片来源:AIP Emilio Segrè Visual Archives

如此的胜利使许多物理学家确信,等级问题预言的新粒子也应该不会比标准模型重太多。如果标准模型的截断点高达接近普朗克能标(如果真是这样,科学家肯定知道标准模型失败了,因为没有考虑量子引力),那么对希格斯质量的紫外修正将是巨大的——如此之轻的希格斯质量自然就是不自然的。如果截断点在希格斯玻色子质量之上不远,将使希格斯粒子的质量与来自截断点的修正差不多,这时一切看起来就很自然。“截断点的选择是过去 40 年来试图解决等级问题的工作的起点。”加西亚说, “大家提出了很棒的想法,比如超对称、[希格斯的]复合性等我们在自然界中还没有观测到的一些可能性。”

2016年,加西亚在牛津大学攻读粒子物理学博士几年后,她清楚地意识到,清算是必要的。“我那时开始对缺失部分更感兴趣,我们在讨论这些问题时通常不包含这一部分,也就是引力——认识到量子引力的内容,远比我们从有效场论中所能得知的要丰富得多。”

图片

引力将一切混合

1980年代,理论学家了解到引力不符合通常的还原论规则。如果你用力将两个粒子狠狠地撞击在一起,能量会在碰撞点处聚集,甚至可以形成黑洞——引力极大以至于任何东西都无法逃脱的区域。如果将粒子更猛烈地撞击在一起,它们会形成一个更大的黑洞。能量更多反而不会让你看到更短的距离;相互撞击越用力,产生的不可见区域就越大——与还原论矛盾。黑洞和描述其内部的量子引力理论完全推翻了高能和短距之间的通常关系。“引力是反还原论的。”纽约大学物理学家谢尔盖·杜博夫斯基(Sergei Dubovsky)说。

量子引力似乎在与自然的架构开玩笑,“使用有效场论的物理学家已经习惯了简洁巧妙的嵌套式能标系统,而量子引力把这套东西“嘲弄”了一番。克雷格和加西亚一样,在大型强子对撞机的搜索一无所获后不久就开始思考引力的影响。在尝试用各种新的方法去解决等级问题时,克雷格重读了 CERN 的理论物理学家朱迪切2008年关于自然性的一篇文章。朱迪切文中写到,宇宙学常数问题的解决方案可能涉及“红外和紫外效应之间的一些复杂的相互作用”,克雷格开始仔细思考其含义。如果红外和紫外具有复杂的相互作用,那将违背通常的退耦性,而红外和紫外的退耦是使有效场论起作用的基础。“我在谷歌上搜索了‘紫外-红外混合’一类的关键词。”克雷格说,这让他找到了1999年的一些有趣的论文,“然后我开始思考这个方向。”

通过打破有效场论的还原论体系,紫外红外混合可能会解决自然性的问题。在有效场论中,像希格斯质量和宇宙学常数等量是紫外敏感的,但因为某些原因它们并没有爆掉,就好像所有紫外物理之间达成共谋——所有的紫外效应都抵消了,这时自然性问题就出现了。“在有效场论的逻辑中,我们放弃了这种可能性。”克雷格解释道。还原论告诉我们,红外物理学也是源于紫外物理学的——水的粘度来自其分子动力学,质子的属性来源于它内部夸克,而当你放大能标,诠释就会显现出来——而不是相反。但是,紫外不受红外的影响或解释,“因此(紫外效应)对希格斯粒子的影响,不能从非常不同的能级处推理得到。”

克雷格现在提出的问题是:“有效场论的逻辑会失效吗?” 也许诠释真的可以在紫外和红外之间双向流动。“这并不完全是无稽之谈,因为我们知道引力可以做到这一点。”他说,“引力不满足正常的有效场论的推理,因为它混合了所有长度尺度的物理——短距,长距。因为这样的特性,给我们遇到的难题找到了出路。”

图片

紫外-红外混合如何保护自然性

几项关于紫外-红外混合的新研究,以及它如何解决自然性问题可追溯到1999年发表的两篇论文。“人们对于这些更奇特的、非有效场论的解决方法越来越感兴趣。”帕特里克·德雷伯(Patrick Draper)表示,他是伊利诺伊大学厄巴纳-香槟分校的教授,他最近的工作[3]继续完成了1999年的那篇论文未完成的部分。

德雷伯和他的同事对CKN约束进行了研究(以 1999 年论文的作者 Andrew Cohen、David B. Kaplan 和 Ann Nelson 的名字命名)。作者考虑这样一种模型:将众多粒子放入一个盒子并加热盒子,粒子的能量不断增加直到盒子坍缩成黑洞。他们计算出,在盒子塌陷之前,可以放入盒子中的高能粒子态的数量与盒子表面积的四分之三次方成正比,而不是一般认为的盒子体积成比例。他们认为这表征了一种奇特的紫外-红外关系。盒子的大小设定了红外尺度,这严重限制了盒内高能粒子态的数量——紫外尺度。

接着他们意识到,如果这种约束也适用于我们整个宇宙,就能解决宇宙学常数的问题。在这种情况下,可观测宇宙就像一个非常大的盒子。它所能包含的高能粒子态的数量与可观测宇宙的表面积的四分之三次方成正比,而不是大得多的整个宇宙的体积。

这意味着通常的宇宙学常数的有效场论计算太天真了。有效场论的计算告诉我们,当你放大空间结构时,高能现象应该会出现,而这应该会使空间的能量爆掉。但CKN约束暗示可能存在远比有效场论计算中假设的要少得多的高能运动——这意味着粒子可以占据的高能粒子态很少。科恩(Cohen)、卡普兰(Kaplan)和尼尔森(Nelson)做了一个简单的计算,结果表明,对于我们宇宙这样尺寸的盒子,他们的约束可以解释观测到的宇宙学常数的微小值。

他们的计算表明,大尺度和小尺度可能以某种方式相互关联,当你观察整个宇宙的红外特性时,比如宇宙学常数,这种关联就会变得很明显。

德雷伯和尼基塔·布林诺夫(Nikita Blinov)在去年的另一个粗略计算中证实,CKN约束成功估算了观测到的宇宙学常数;他们还表明,这种方法不会破坏有效场论在较低能级的实验中取得的许多成功。

CKN约束并没有告诉我们为什么紫外和红外是相互关联的——即,为什么盒子的尺寸(红外)严重限制了盒子中高能粒子态的数量(紫外)。要知道为什么,我们可能需要了解量子引力。

还有一些研究人员在量子引力的另一个特定理论——弦论——中寻找答案。去年夏天,弦论学家史蒂文·阿贝尔(Steven Abel)和基思·迪内斯(Keith Dienes)展示了弦论中的紫外-红外混合如何解决等级问题和宇宙学常数问题。

作为引力和其他基本理论的候选者,弦论认为所有的粒子都是开或着闭合的振动的弦。光子和电子等标准模型粒子是基本弦的低能振动模式。但弦也可以更有力地振动,产生更高能量的无限的弦态能谱。在这种情况下,等级问题关心的是,如果没有超对称来保护,为什么这些弦态的修正没有使希格斯粒子的质量膨胀。

迪内斯和阿贝尔计算出,由于弦论的不同对称性,即所谓的模数不变性(Modular invariance),从红外到紫外的无限能谱中所有能量的弦态的修正将以合理的方式相互抵消,从而保持希格斯质量和宇宙学常数很小。研究人员指出,这种低能和高能弦态之间的关联并不能解释为什么希格斯质量和普朗克能量离得这么遥远,但两者之差是稳定的。尽管如此,在克雷格看来,“这确实是一个不错的想法。”

新模型代表了越来越多的紫外-红外混合理念。克雷格的另一个研究角度可以追溯到1999年的另一篇论文,作者是普林斯顿高等研究院(IAS)的著名理论物理学家内森·塞伯格(Nathan Seiberg)及两位合作者。他们研究了背景磁场充满空间的情况。为了了解这里的紫外-红外混合是如何产生的,想象一对带相反电荷的粒子附着在一个弹簧上,垂直于磁场在空间中飞行。当你增大磁场的能量时,带电粒子加速分离,拉伸弹簧。在这个玩具场景中,更高的能量对应更长的距离。

塞伯格和他的同事发现,这种情况下的紫外修正具有特别的性质——可以说明还原论的箭头是如何旋转的,红外会影响紫外能标处的情况。这个模型和现实世界是不同的,因为真实的宇宙没有这样的背景磁场来施加方向。尽管如此,克雷格一直在探索是否可以用类似的方法来解决等级问题。

克雷格、加西亚和赛斯·科伦(Seth Koren)还共同研究了一个关于量子引力的观点,被称为弱引力猜想(Weak gravity conjecture,WGC),如果它被证明是正确的,则可能会在等级问题上施加一致性条件——使希格斯质量和普朗克尺度之间的巨大分离是必要的。

纽约大学的杜博夫斯基从2013年起就开始思考这些问题,当时人们已明白超对称粒子在大型强子对撞机中迟迟未现。那一年,他和两名合作者发现了一种新的量子引力模型[4],解决了等级问题。在他们的模型中,还原论的箭头从中间尺度同时指向紫外和红外尺度。虽然结果是有趣的,但这个模型只适用于二维空间,而且杜博夫斯基不知道如何推广它。后来他转而研究其他问题。去年,他再次遇到了紫外-红外混合问题:在碰撞黑洞研究中,他发现其中的自然性问题可以通过“隐藏的”对称性来解决,它与黑洞形变的低频和高频有关[5]

和其他研究人员一样,杜博夫斯基似乎并不认为目前发现的任何特定的模型具有明显的库恩革命的成分。一些人认为整个紫外-红外混合概念缺乏前景。“目前还没有有效场论失效的迹象。”约翰·霍普金斯大学的理论物理学家戴维·卡普兰(David E. Kaplan)说(他与CKN论文的作者没有关系),“我认为那里没有。”让大家信服的想法需要实验证据,但到目前为止,现有的紫外-红外混合模型缺乏可实验的预测;他们旨在解释为什么我们没有在标准模型之外看到新的粒子,而不是预测我们应该看到什么。不过,对于预言和发现新物理来说,就算不能在对撞机里实现,未来在宇宙学方面还是有希望的。

综合来看,新的紫外-红外混合模型说明了基于还原论和有效场论的旧范式的短视性,而这可能仅仅是一个开始。

“事实上,当你进入普朗克尺度时,还原论失效,所以引力是反还原论的。”杜博夫斯基说,“我认为,在某种意义上,如果这个事实对我们观察到的东西没有深刻的暗示,那将是不幸的。”

注释

[1] https://journals.aps.org/prd/abstract/10.1103/PhysRevD.14.1667

[2] https://journals.aps.org/prd/abstract/10.1103/PhysRevD.10.89

 

[3] https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.82.4971
[4] https://arxiv.org/abs/1305.6939
[5] https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.101101
本文译自Natalie Wolchover, A Deepening Crisis Forces Physicists to Rethink Structure of Nature’s Laws 原文链接:
https://www.quantamagazine.org/crisis-in-particle-physics-forces-a-rethink-of-what-is-natural-20220301/
图片

本文转载自微信公众号:返朴  作者:娜塔莉·沃尔奇佛

转–广义观测相对论:时空在爱因斯坦广义相对论中为什么弯曲?

广义观测相对论:时空在爱因斯坦广义相对论中为什么弯曲?

阮晓钢
北京工业大学信息学部
摘要:“观测相对论”(Observational Relativity, OR),基于不同于爱因斯坦狭义相对论之逻辑前提,却导出了形式上与洛伦兹变换完全相同的“广义洛伦兹变换”,概括统一了伽利略变换和洛伦兹变换,揭示了物理学不同观测体系之间以及不同理论体系之间的对应关系,赋予玻尔对应原理更为普遍的意义。本文基于OR理论和玻尔对应原理,建立“广义对应原理”;进而,基于“广义对应原理”,将OR理论由惯性时空推广至引力时空,将爱因斯坦广义相对论由光学观测体系推广至一般观测体系,建立起与爱因斯坦广义相对论同构一致的“广义观测相对论”(General Observational Relativity, GOR )。
GOR理论为我们带来了有关爱因斯坦广义相对论的全新认识:时空并非真地弯曲——客观真实的时空是不会弯曲的;与一切观测上的相对论性效应一样,所谓“时空弯曲”,并非客观的物理现实,而是观测局域性所致之观测效应。GOR理论概括统一了牛顿万有引力论和爱因斯坦广义相对论两大理论体系。GOR理论中,牛顿万有引力论和爱因斯坦广义相对论皆霍金言下之局部理论(Partial Theory),分属不同观测体系:牛顿…分属不同观测体系:牛顿万有引力论乃理想观测体系的产物,而爱因斯 坦广义相对论则是光学观测体系的产物。根据 GOR 理论,不同观测体系存在不同程度的观测局域性,其观测 上的引力时空呈现不同程度的弯曲状态:光速是有限的(c<无穷),因而,光学观测体系存在观测局域性,这是 爱因斯坦广义相对论之引力时空看起来有些弯曲的原因;理想观测体系无观测局域性存在,因而,牛顿万有引 力论之引力时空代表客观真实的引力时空。广义对应原理意义下,GOR 理论与牛顿万有引力论和爱因斯坦广 义相对论具有严格的对应关系:光学观测体系情形,GOR 场方程严格地约化为爱因斯坦场方程,GOR 运动方 程严格地约化为爱因斯坦广义相对论之运动方程;理想观测体系情形,GOR 场方程严格地约化为牛顿万有引 力定律之泊松方程形式,GOR 运动方程严格地约化为牛顿第二定律之运动方程形式。
这种严格的对应关系表 明,GOR 理论,既与爱因斯坦广义相对论逻辑上一致,又与牛顿万有引力论逻辑上一致;同时,这种严格的 对应关系印证了 GOR 理论逻辑上的自洽性和理论上的正确性。GOR 理论意味着,人类及其物理学需要重新认 识牛顿万有引力论和爱因斯坦广义相对论,重新认识引力相互作用及其相对论性效应,重新认识爱因斯坦基于 广义相对论所做出的科学预言,重新认识客观世界,重塑人类的自然观。

 

 

转发:北京新航天科普教育基地正式运行

新航天打卡地!北京新航天科普教育基地正式运行

中国新闻网 2022年4月25日19:18 中国新闻网官方账号
beijing_20220426170106
第七个“中国航天日”,新航天科普教育基地航小科航天科普馆正式运行。 丁姝雯 摄
中新网北京4月25日电 (孙建平 丁姝雯)
2022年第七个“中国航天日”,又一个航天科普教育基地——航小科航天科普馆正式运行,航天迷们有了一个新的打卡地。
据悉,航小科航天科普馆坐落在北京西三环航天桥东南角的航天大院内,中国航天事业奠基人钱学森的故居就位于该大院。该馆刚投入试运行,就得到社会各界广泛关注。4月23日,“中国航天基金会航天科普教育基地”授牌仪式在该馆举行。
beijing_20220426170046
第七个“中国航天日”,新航天科普教育基地航小科航天科普馆正式运行。 丁姝雯 摄
航小科航天科普馆面积近200平方米,秉持“启迪智慧、传播知识、激励成长”的设计理念,营造出数字化展厅体验,主要展现航天科普和国防教育内容,由中国航天科工集团设计建造。
展区内设有序厅、“筑梦航天奠基伟业”展区、主展区、沉浸式展区和互动体验区5个部分,固定展区和流动展区相结合,平面展示、模型陈列和多媒体展示、互动教学等科技手段相结合,艺术化、娱乐化展现航天科普知识,做到了展示内容的全方位、系统性、历史性、趣味性、互动性,并能够根据参观者需要定制推送专题讲解内容。
中国航天基金会副理事长侯秀峰表示,航小科航天科普馆作为宣传航天、服务国防的重要科普阵地,将在中国航天基金会组织的各类活动中发挥重要作用;将积极履行社会责任,不断更新迭代展览表现内容及技术手段,为广大青少年儿童开展爱国主义教育、国防安全教育提供崭新的平台。
侯秀峰指出,特意将航小科航天科普馆建在航天机关幼儿园边上,就是要让孩子们从启蒙阶段就树立起爱航天、爱科学、爱祖国的意识。后续,还会针对性改进提升展馆功能,打造青少年儿童更喜爱、更容易接受的科普内容。展示主题和相关展品也会定期更替,满足不同参观者的知识需求,要努力把航小科航天科普馆建设成为一座集科普展览、科普放映、科学表演、科普培训为一体的航天智慧展馆。
beijing_20220426165921
第七个“中国航天日”,新航天科普教育基地航小科航天科普馆正式运行。 丁姝雯 摄
据介绍,航小科航天科普馆投入试运行以来引起了社会机构和科普爱好者们的关注。钱学森之子、上海交通大学钱学森图书馆馆长钱永刚,原国家首批航天员兼航天员教练吴杰此前来馆参观,中国航天科工集团三院31所副所长刘小勇在该馆讲解了“冬奥会水下特种火炬研制攻关背后的故事”。
后续,航小科航天科普馆将与北京市中小学陆续开展广泛合作,分批组织学生们来馆参观,引导广大青少年儿童了解航天知识、国防知识,增强国防观念,激发爱国热情。北京以外的参观者也有机会感受风采,航小科航天科普馆计划与其他城市开展合作,布局流动展馆,争取让全国更多的青少年儿童能够亲身感受到航天魅力,了解中国航天事业的成就。(完)

转发:6G时代卫星通信、卫星互联网的发展及研究方向、应用方向研究

6G时代卫星通信、卫星互联网的发展及研究方向、应用方向研究

原文:星谷物联网应用设计研究院 2022-01-24 13:54
20220202204928

星谷物联网应用设计研究院

开展卫星监控监测,物联网传感技术,技术进口应用及设计研究,卫星产业特色小镇建设开发,产业园经营开发管理,会议及展览服务,专业设计服务, 承办2021中国国际商业航天博览会及宣传、航天信息资讯与咨询等。
一、前言

今天,互联网家喻户晓,移动互联网如日中天,而卫星互联网也在冉冉升起。这些网络就像同交通、电力、燃气、自来水等一样,都是人类社会不可或缺的基础设施。如果说早先基础设施传递的是物质和能量,那么互联网、移动互联网和卫星互联网等传递的则是信息,所以它们被称为信息基础设施。与物质和能量不同,信息具有天然的渗透性、知识性和智能型,其生产、传递的边际成本要远小于物质和能量,因此,它对人类社会发展的推动作用要远大于物质和能量。

在当今信息网络中,卫星通信、地面光纤通信和移动通信可谓三剑客,它们三足鼎立、三分天下。与地面光纤通信主要用于骨干传输和固定接入、地面移动通信主要用于移动接入相比,卫星通信可以应用于骨干传输、固定接入、移动接入、企业联网、电视广播、应急通信、军事通信等多种场景,在军、民、商等各个领域都占有不可或缺的地位。看起来,卫星通信更像个全能选手,十八般武艺没有它玩不转的。实际也的确如此,它的这些能耐来源于它的广覆盖、远连接、能移动这三大天然特性。

在我国为应对新冠疫情对全球经济的影响而启动的新基建中,5G、物联网、工业互联网、卫星互联网等信息基础设施,以及与其相关的智能交通、智慧能源等基础设施都成为主要的建设内容。卫星互联网被列入新基建范围让我国卫星通信业内人兴奋不已,整个行业似乎突然有了一种翻身做主人的感觉。毫无疑问,卫星互联网被列入新基建范围对我国卫星通信的发展是个大好事。此时此刻,要知道新基建的内容从何而来,就有必要回顾一下互联网、移动互联网卫星互联网的发展简史。因为,温故而知新。不过,由于卫星通信在频轨资源、制造和发射成本方面受到一定的局限,而地面光纤通信和移动通信在容量和性价比方面取得了更大的成就,因此,卫星通信早期在骨干传输方面受到地面光纤通信的替代,后期在移动接入方面受到地面移动通信的挑战。同样作为无线通信技术,地面移动通信对卫星通信的影响更大。6G时代到来,地面移动通信的传输速率越来越高,功能越来越强大。

特别是6G同时覆盖高带宽、大连接、低延时三大应用场景,摆出一副通吃高清/超高清视频、物联网、车联网等所有业务的架势。毫无疑问,相比以往的移动通信系统,6G的高带宽将更适合于新闻采集、视频广播、在线直播等业务,会进一步推动移动网络上IPTV和OTT TV的发展,这将对卫星视频分发、卫星电视直播产生直接的冲击。

不过,人们也不要过于担心5G移动通信对卫星通信的冲击,因为6G“随遇接入、万物互联”愿景的实现还需要可以全球无缝覆盖的卫星通信这个“同胞兄弟”出手相助。目前ITU、3GPP和SaT5G等标准化组织无一不在从事卫星通信和5G的融合研究。比如,6G数目众多的远程基站有的需要卫星通信来回传业务流量,6G广播也可能需要卫星通信来提供内容投递。

此外,还有机载和船载通信等。也就是说,卫星通信与地面移动通信是相生相克的关系。尽管如此,卫星通信必须要正视6G时代的到来,因为6G的的确确在与卫星通信争频率、抢业务。卫星通信要持续生存、发展下去,就必须使出浑身解数来为自己创造市场。因为,技术是为市场存在的,企业是为客户存在的。

二、互联网一统天下

说到互联网,不得不望文生义。互联网起源于美国,其英文名字叫Internet,它最初曾被我国音译成因特网。从字面上看,Internet是由Inter和net组合而成,表示相互连接起来的网络。互联网始于1969年美国ARPA(国防部研究计划署)启动的用于军事通信目的的网络互连研究项目,连接的对象主要的计算机。在那个年代,PSTN(公用电话网)、X.25(公用数据网)和DDN(公用数字数据网)以及IBM的DEC等公司的专网等都是服务于特定领域的业务网络,彼此异构,不能互通。ARPA网络互联研究项目计划开发出一套以TCP/IP(传输控制协议/互联网协议)为核心的协议族,其目的是将各种异构网络相互连接起来,实现计算机之间的互联互通。所以,初期的互联网又叫计算机网。

TCP/IP是从ISO(国际标准化组织)的OSI(开放系统互连)七层协议简化而来的,共分物理、链路、网络、传送和应用五个层次。物理层是实现信号在各种介质上的传输,信道编码和调制解调是其中的主要技术;链路层实现网络节点之间的点到点传输,同步、纠错是其中的主要技术;网络层实现数据包在从信源到信宿的投递,路由选择和交换是其中的主要技术;传送层实现端到端的会话和确认;应用层为各种应用提供接口和界面。IP和TCP分别对应于网络和传送层,其中IP又是互联网协议族的中枢。

互联网中的节点就是大家所熟知的路由器,它用IP协议将各种异构网络连接在一起。终端用户数据被封装成统一格式的IP数据包,其中包括全球唯一的IP地址。IP数据包封装在各种网络协议之上,由路由器来进行数据包的路由选择和接力传递,这个过程被形象地称为IPover everything,这个everything指的是各种异构网络。

20220202205653图1互联网协议族和系统模

早期,路由器不得不处理各种网络协议,如X.25、FrameRelay、ISDN(综合业务数字网络)和ATM(异步传输模式)等。因为使用的人不多,处理的数据量不大,一般的路由器可以得心应手。1993年,美国克林顿政府提出国家信息基础设施(NII)或信息高速公路计划,人们对信息网络重要性的认识得到空前的提高。互联网因为其强大的开放性和包容性脱颖而出,很快超越了电信行业精心设计的ISDN和ATM等网络。基于HTML(超文本标记语言)的WWW(万维网)的流行、语音和视频的分组化和IP包化传输丰富了互联网的应用,也使得网上的数据量呈现指数增长,这对互联网原有的数据传输和交换模式都形成了巨大的冲击。

为了应对以上冲击,互联网有三个重要的解决之道。一是用在大容量SDH(同步数字体系)光纤网络之上运行PPP(点对点协议),来在骨干、汇聚和接入层取代各种低速的业务网络,二是在路由器中引入MPLS(多协议标记交换)等技术来提高数据的处理速度。根据应用场景和业务处理能力的不同,路由器响应地分为骨干、汇聚和接入路由。此外,还有家庭路由器。三是对各种应用数据划分优先级,对话音等应用提供电信级的服务。此外,在互联网商业化过程中,网络接入技术也是前仆后继,基于电话双绞铜线的xDSL(数字用户线路)、基于有线电视电缆的DOCSIS(有线电缆数据服务接口规范)都发挥过重要的支撑作用,但最终都被WiFi(无线保真)无线网络和各种PON(无源光网络)光纤网络所取代。

至此,互联网完成了华丽的转身,它不再寄人篱下,而是自立门户,并且在三网融合中实现对电话网和有线电视网的整合。今天人们习以为常的IP电话、IPTV和OTTTV就是三网融合的典型产物。它们在应用形式上像电话网、电视网,但是网络结构却是互联网。这个结果被人们形象地成为EverythingoverIP,这里的Everything指的是各种内容和应用。今天国外的Facebook、Google和Twitter以及国内的百度、阿里和腾讯等所谓互联网公司实际都是在从事互联网应用,如电子商务、社交网络等,而物理意义上的互联网则主要掌握在电信运营商手里。

三、做大容量,吸引市场

带宽容量是衡量所有信息网络性能的最基本指标,是它们克敌制胜的首要武艺。面对高清/超高清视频、社交网络等应用带宽需求的日益增长,信息网络必须不断提高网络带宽。就卫星通信来讲,信道编码效率基本接近极限水平,网络带宽只能通过多点波束空分复用、高频传输这两者路径来获得。

目前,各种HTS都在通过这种路径来扩大带宽。Viasat在建的GEO HTS——Viasat-3容量达到1Tbps,这几乎是常规卫星容量的1千倍。Hughes和Eutelsat公司分别在建Jupiter-3、KONNECT容量也达到500Gbps。这三大VHTS(超级HTS)都将在2021年发射。HTS容量的迅速提升使得GEO HTS的单位Gbps制造成本降至百万美元以下,从而在服务能力和资费水平方面与地面宽带网络旗鼓相当。随着VHTS的推出,卫星通信在信息网络中的吸引力将会得到有力的提高。

为了进一步扩大卫星通信容量,在充分利用多点波束和频分复用技术的同时,Ka之上的频率资源更为丰富的Q、V频段已经开始进入商用。

2016年3月,Eutelsat率先在Eutelsat 65 West A卫星上使用Q频段。SpaceX、O3b、Boeing、Amazon以及国内相关单位的星座系统都有V频段的使用计划,而欧美等国已开始进行频率更高的W频段的研究工作。

2018年6月20日,由芬兰研制的纳卫星首次从太空向地球发送W频段信号。与Q、V频段相比,空间激光通信的带宽更大、抗干扰能力更强。经过多年来美欧、日本等的一系列研究,目前卫星激光通信开始进入实用阶段。

2019年2月,欧洲Airbus公司与日本SKY Perfect JSAT公司签订了合作协议,旨在共同开展激光数据中继卫星业务。SpaceX、Telesat以及国内相关星座系统都有卫星激光通信计划。我国2019年底发射的“实践20卫星”上同时开展Q、V和激光通信传输试验,其中星地激光通信传输速率达到10Gbps的国际先进水平。

此外,特性介于毫米波和激光之间的太赫兹也在研究之中。太赫兹频率在0.1-10THz之间,理论传输速度可达1Tbps。2018年5月,Tektronix/IEMN(一个法国研究试验室)在252-325GHz频段实现了100Gbps无线传输。

四、移动互联网攻城略地

应该说,尽管无线、微波传输也曾发挥一定的作用,但互联网最初主要是在有线网络之上发展起来的。互联网的目标在于网络互联,实现全世界的计算机联合起来,移动网络的目标在于实现随时随地通信。从上个世纪七十年到现在,移动通信基本上每隔十年就更新换代一次。如果说,最初的1G是模拟话音移动通信系统,与互联网没有关联,那么,从2G数字通信开始,移动通信的每一步发展都受到互联网的强大影响,并且最终成为互联网的重要组成部分和应用形式,而且大有后来居上势头。

移动通信逐步融入互联网、发展成为移动互联网是在2G和3G时期完成过渡的,其起点是2G时期的GPRS(通用分组无线业务)。GPRS是在GSM网络话音电路交换基础上引入的无线分组交换技术,以提供端到端的、广域的无线IP连接和数据传输。GPRS是GSM网络向3G过渡的2.5G技术,它实现了移动通信与互联网的对接,其理论带宽可达171.2Kbps,实际大约在40~100Kbps。在GPRS之上,WAP(无线应用协议)把互联网上的HTML数据转换成用简单的WML(无线标记语言)格式,以适应当时网速和手机智能化程度都受限的应用场景。

进入3G时代后,为了满足苹果之类智能手机和各种增值应用带来的带宽增长需要,比GPRS速率更高的HSDPA(高速下行分组接入)和HSUPA(高速上行分组接入)及其加强版HSPA+等技术开始陆续登场。HSPA+的上行速率达5.76Mbps,下行速率达21Mbps或28Mbps。

 20220202210107

图2 2G和3G时期移动互联网的演技过程

与2G、3G通过电路和分组域来分别传输话音和数据不同,4G彻底取消了电路域,用统一的分组域来承载所有的业务,它通过IMS(IP多媒体子系统)来处理话音等实时性的业务,VoLTE(长期演进语音承载)就是一个在IP之上传输话音的标准。可见,4G让移动通信脱胎换骨,变成了真正的移动互联网。进入5G移动互联网阶段,其应用领域已从普通互联网应用扩展到物联网、车联网和工业互联网。不仅如此,5G还实现了物联网、云计算、大数据和区块链技术的系统整合,使得整个社会走向人工智能时代。人工智能时代的互联网更像人的大脑,它有听觉、视觉、触觉,可以分析、计算、存储、判断,最终可能会有自我意识。

 20220202210254

图3 6G阶段互联网的智能特征

五、降低成本,抢占市场

成本是任何企业在市场竞争中获取优势地位的杀手锏,这样的案例在家电、通信、计算行业比比皆是,卫星通信行业亦不例外。这轮全球LEO星座热潮兴起的重要原因之一就是卫星制造和发射成本得到大幅降低。

在小卫星批量制造方面,卫星制造公司开始使用非航天级别的COTS(商业现货)组件,利用3D打印、模块化设计、即插即用、智能装配、大数据、机器人、增强现实等成熟技术,采用与飞机和汽车生产相似的流水线组装方式,从而可以每天生产数颗卫星,并将单颗LEO HTS的制造成本降到百万美元以下。

马斯克领导的SpaceX公司凭借卫星制造和发射一体化控制能力,易于量产、装载、发射的卫星扁平化设计,以及一箭60星发射和火箭回收再利用等独门绝技,将OneWeb这个强大对手挑下马来。SpaceX在航天运输方面的异军突起以及在卫星互联网方面的雄心壮志也是来自于技术创新和成本控制方面的非凡功夫。

在卫星成本控制方面的明星企业,除了马斯克麾下的SpaceX,还有ABS公司前CEO Tom Choi新组建Saturn(土星)卫星公司。如果说马斯克的SpaceX更擅长卫星制造和发射,目标是抢占LEO卫星互联网市场,那么,Tom Choi的Saturn则更懂卫星通信用户需求和系统实现,志在争夺GEO卫星通信市场。Saturn致力于低成本的小型GEO卫星制造。通过全数字有效载荷等技术的应用,Saturn成功将85Gbps的Ka频段HTS成本降到约为8500万美元。

Tom Choi对LEO的冷静和对GEO的坚持态度正在被OneWeb的财务危机和GEO市场的回暖所印证。可见,卫星制造发射成本控制既来自于技术、产品和商业模式创新,更来源于市场机制和企业家精神发挥。

六、增强智能,适应市场

信息网络市场需求千变万化,这必然要求信息网络具有一定的弹性和智能来应对。5G中的SDN、NFV和切片等技术,通信卫星中的数字载荷和软件定义都是具体的解决之道。基于数字载荷和软件定义技术的灵活卫星可根据应用需求的变化,对卫星的覆盖、连接、带宽、频率、功率和路由等性能进行动态调整和功能重构。

根据Euroconsult的统计,目前全球一半左右的HTS卫星带有灵活性载荷,其中覆盖灵活性占35%,连接、带宽和频率灵活性各占15%,功率占9%。覆盖灵活性的重要应用形式是移动波束,它已在O3b、Inmarsat、Intelsat等公司的HTS普遍应用。连接灵活性的重要应用形式是DTP(数字透明处理器),它可在不同波束之间建立连接,从而解决一般HTS星状结构带来的双跳通信影响。

这一技术在Intelsat EPIC系统得到充分运用,它无需要求用户更换终端就可以直接接入HTS网络。带宽灵活性的重要应用形式是跳波束(Beam Hopping),它通过时分技术,将有限的带宽资源在不同波束之间动态分配,从而有效解决多点波束带来的HTS资源碎片化和不同波束之间的业务忙闲不均问题,提高HTS带宽资源的利用率,其典型应用案例是Eutelsat- Quantum(欧卫量子)卫星。Eutelsat Quantum号称全球首颗真正意义上的灵活性卫星,该星由Airbus公司建造,可通过软件定义调整覆盖、频率和功率。

在天地一体化的卫星互联网时代,不仅需要通过数字载荷和软件定义来实现空间段卫星智能化,地面段VSAT网络也要借鉴5G中的SDN、NFV和云化技术来实现智能化,并积极融于基站回传、IP中继、移动平台接入、混合网络和物联网等5G应用生态之中。5G的新颖之处在于它标准化了服务编排。共享5G协议的卫星运营商和服务提供商可以使用标准化程序,来配置和管理多种类型的服务,从而提高卫星通信网络的市场适应能力。

七、卫星互联网开疆拓土

虽然地面互联网已非常发达,但它仅覆盖地球陆地面积的20%、地球表面的5.8%。要真正实现6G的万物互联和随遇接入愿景,还需要借助可以真正全球覆盖的卫星互联网。

应该说,卫星通信网络的互联网化早在2000年之前就已开始,其中,VSAT网络与DVB-S(数字视频广播—卫星)、DVB-RCS(数字视频广播—卫星回传信道)等标准的结合是关键的一环。DVB-S原来是ETSI(欧洲电信标准协会)开发的一套用于卫星数字视频广播的技术标准,包含信源编码以及信道编码和调制。后来,随着卫星信道编码和调制技术的进步,ETSI又先后提出DVB-S2和DVB-S2X标准,其周期恰好也是十年。DVB-RCS是ETSI为了满足卫星宽带通信的发展需要而提出的回传信道标准。DVB-S系列和DVB-RCS标准得到全球VSAT网络设备主流厂商的共同支持,这使得全球VSAT网络有了共同的开放标准,从而为卫星通信网络的IP化和卫星互联网的发展奠定了坚实的基础。

在基于DVB-S系列和DVB-RCS标准的卫星互联网前向信道中,IP数据包采用MPE(多协议封装)进行分段,然后装入到MPEG2-TS(传输流)包中。反向信道的IP数据包可以采用ATM或MPE来分装,然后装入到MPEG2-TS。最初,这类卫星互联网的前向信道速率可达45Mbps,反向信道速率可达2Mbps。随着大容量HTS(高通量卫星)和更高效率信道编码调制技术的推出,前向信道和反向信道速率都得到十倍以上的提升,它们充分满足了消费者宽带接入、移动平台接入、基站中继、内容投递等应用的带宽需求。

20220202211144

图4卫星互联网的应用场景

目前,卫星互联网主要是以HTS的形式出现,它们共有GEO(高轨)、MEO(中轨)和LEO(低轨)三种形式。其中GEOHTS系统传输时延较长,高纬度地区覆盖能力较弱,但系统结构简单,可以广域覆盖,适合机载通信、海事通信、消费者宽带接入、视频广播和内容投递之类应用;LEOHTS复杂一些,但时延较短,可以实现全球无缝覆盖,适用于基站中继、物联网等低时延类应用;MEOHTS则介于前面两者之间。在GEO卫星方面,北美Viasat公司Viasat-2和Hughes公司Jupiter-2两颗在轨HTS的容量分别达到300Gbps和220Gbps,在建的Viasat-3和Jupiter-3容量将分别达到1Tbps和500Gbps,而传统通信卫星容量只有1Gbps左右。在MEO星座方面,SES公司旗下的O3b目前在轨20颗,主要应用是中继和回传。2017年11月,O3b计划新增30颗卫星。在LEO星座方面,SpaceXLEO星座一马当先,最终计划发射4.2万颗卫星。目前,SpaceX已经通过一箭60星技术完成七次发射,当卫星数量达到800颗就可具备初步的服务能力。值得一提的是,DVB-S系列和DVB-RCS标准主要适用于GEO卫星。对于MEO和LEO卫星,由于信道特性的改变,通常需要更合适的空口标准和协议,但是VSAT网络方面大同小异。

卫星互联网是互联网,尤其是移动互联网的自然延伸。为了促进卫星互联网与5G的融合,ITU、3GPP、SaT5G(卫星5G联盟)和CBA(C波段联盟)等国际标准化组织都在开展相关研究工作。在2019欧洲网络与通信大会(EuCNC2019)上,SaT5G进行了一系列卫星5G演示:

1)利用卫星和地面网络的MEC(移动边缘计算):比特率自适应、链路选择、增强视频流传输;

2)基于卫星组播技术的视频缓存和实况内容分发;

3)基于MEO卫星的航空机载通信;

4)利用混合回传网络和MEC的5G本地内容缓存;

5)卫星网络5G视频演示;

6)面向农村市场和大型集会事件扩展服务的混合5G基站中继。其中,机载通信和农村宽带最具吸引力。

2019年5月,Telesat、英国萨里大学与比利时Newtec联合进行了LEO卫星5G回传测试,往返时延为18-40毫秒,主要应用包括8K流媒体传输、网页浏览和视频通信。这些试验成果表明,卫星互联网与5G已经实现全面的融合。卫星互联网将为互联网和移动互联网展现广阔的发展空间,在普遍服务方面发挥独特作用,让人类所有成员享受上网和信息服务的基本权利。

八、融合星地,汇聚市场

由于经济规模的原因,卫星通信是一个相对封闭的行业。不同卫星通信网络在终端层面很难直接互通。DVB标准的采用改善了卫星通信网络的开放性,但是不同系统相互独立的局面短时很难彻底改变。卫星通信与地面通信网络的发展进程不太同步。卫星互联网启动的时候,5G已经商用。等到6G商用的时候,卫星互联网估计也已经定型。因此,卫星与地面网络的一体化设计只能是个理想。卫星通信网络与地面通信网络的融合应用主要还是通过网关互联,特别是终端聚合来实现。

在即将到来的高中低轨卫星互联网并存以及5G与卫星融合时代,在连接方面,需要通过小尺寸、低功耗、快响应的电调平板天线来在不同频段之间、不同卫星之间和卫星通信与地面通信网络之间进行快速切换,以保持通信连接的畅通无阻。在应用方面,还需要通过移动边缘计算技术来实现路由选择、速率适配、内容存储、数据分析、系统控制等终端应用管理工作。

近年来,电调平板天线商用化水平一直在不断提高。在EuCNC2019(2019欧洲网络与通信大会)上,移动边缘计算已经在SaT5G联盟进行的一系列卫星5G演示中得到应用。

除了电调平板天线和移动边缘计算技术,还需要具有局域或区域覆盖能力的无线网络与卫星通信网络对接,来真正实现随遇接入、无缝覆盖,并分摊用户使用成本。在Saturn公司之前,Tom Choi先创立了低成本、高能效的宽带无线平台Curvalux。Curvalux其使用固定的多波束相控阵天线,与传统LTE基站相比,其功耗降低到原先的1/100,同时提供7倍的吞吐量。

据称,全天候为Curvalux系统供电的100W太阳能电池套件只需200美元。在2019年拉斯维加斯NAB(美国广播电视)展期间,Saturn公司向美国客户展示了Curvalux的技术,距离发射塔800米的智能手机下载速度达到了400Mbps。通过Wi-Fi接入点,从5公里外传输数据速度可达100Mbps。链路预算显示,最远传输可达15公里,甚至30公里。

九、创新方式,拓展市场

面对传统卫星通信市场的发展瓶颈,各大卫星运营商可谓八仙过海,各显神通,积极扩展市场。Intelsat投资于OneWeb,分享市场资源,共同应对频率干扰。现在后来因种种原因,两家公司分道扬镳。SES整合O3b,以拓展MEO HTS市场。Eutelsat建设LEO物联网星座—ELO,以进军卫星物联网市场。Telesat通过Telesat这个LEO HTS星座,进入卫星互联网市场。Inmarsat利用自身GEO卫星和卫星中继通信技术,为一家LEO星座运营商提供全球天候的卫星测控、任务控制和故障查找等资产运行和管理服务。SKY Perfect JSAT高度重视HTS、平流层飞艇、基于LEO的遥感数据传输和AIS(船舶自动识别系统)、电调平板天线等市场机会,来开创新的发展局面。

十、寻求扶持,扩大市场

卫星通信是国家信息基础设施的重要组成部分,它同时隶属于航天产业和信息产业,其战略地位十分突出。在航天产业中,卫星通信的产业化程度最高,其中,商业化发展卫星通信提供了强大的推动力量。尽管如此,政府政策上的扶持也是极为重要的因素。以SpaceX为例,今天它在卫星制造和发射的一马当先与其发展过程中美国政府在资金、技术、人才、设施等方面的支持是分不开的。

2008年,美国NASA宣布SpaceX获得由猎鹰号发射的IDIQ合同,自此,SpaceX成为全球仅有的承担国家航天发射任务的私营企业。2015年,美国国防部授予SpaceX军用卫星发射许可证书,并将某些军用发射场和基地提供给SpaceX用于发射猎鹰火箭。美国军方鼓励退役军人在保密前提下,转换角色,重新进入企业,承担咨询或研制任务,以此促进人才的流动,为提升企业的实力提供人才保证。SpaceX军负责政府销售的副总裁曾是美国空军官员。

在火箭发动机技术上,美国NASA向SpaceX派驻技术人员并转让专利,开放阿波罗计划的部分技术,提供火箭发动机试车测试台,帮助SpaceX发展猎鹰火箭关键技术,并开放风动实验设施,以充分利用。2020年3月13日,美国FCC向SpaceX开放总价值160亿美元的农村宽带业务补贴资金竞争机会。历史上,ViaSat就曾获得过类似的农村宽带业务补贴资金支持。可见,SpaceX、ViaSat的成功都不是一种偶然,获得充分的市场哺育是它们取得成功的关键因素。

当前,我国正处于卫星互联网建设、卫星通信产业化和国际化发展的关键时期。我国卫星通信产业面临卫星和地面设备技术相对落后以及市场受限双重困境,而后者尤为严重。我们知道,对于传统卫星通信市场而言,最大的需求来自于卫星电视直播。截止2018年底,全球卫星行业总产值为2774亿美元(美国占43%),其中通信为主的卫星服务业为1265亿美元,卫星直播电视为942亿美元,可见其地位之高。

而我国卫星直播电视还处于公益服务阶段,不仅没有商业收入,而且每年国家还需要提供财政资助。对于新兴的卫星互联网市场而言,最大需求来自于消费者宽带接入。在国家宽带普遍服务计划中,上千亿的资金基本上都用于地面光纤和移动通信系统的建设,目前98%的行政村都实现了光纤和移动通信网络连接。

目前,我国卫星直播电视家庭用户数已达1.4亿,商业化运营市场潜力巨大,且各地开展区域卫星直播电视的意愿也非常强烈。我国2%的行政没有通宽带,其比例虽然很小,但家庭用户总数依然非常可观。如果这个两个市场能同时开放,无疑成为我国卫星通信产业化发展的双翼。

十一、结束语

互联网、移动互联网和卫星互联网的发展历程是人类信息通信应用不断丰富、活动范围不断扩大的过程,或者说是从固定到移动、从地面到海空、从网络到信息、从应用到智能不断升华的过程。其中,互联网实现了三网融合,移动网络基本实现了随遇接入和万物互联,卫星互联网实现了空天地海全球覆盖。如果说卫星互联网和5G的融合还仅仅停留在通信范围,那么在即将到来的6G中,卫星互联网、卫星导航、卫星遥感都将会大显身手。

技术应用、商业模式、产业政策和市场需求都是卫星通信产业发展的强大动力,其中市场需求具有决定性的影响。卫星通信产业的持续发展,需要卫星制造商和运营商在网络容量、通信成本、系统智能、星地融合、模式创新、政策扶持等方面同时发力,以做大市场规模,实现良性循环发展。

目前,我国卫星通信产业最大的瓶颈在市场受限。市场受限的主要原因是卫星直播电视和消费者宽带接入两个主体市场未能充分发育。

在信息网络天地一体化时代,互联网、移动互联网、卫星互联网以及卫星导航和卫星遥感的全面发展和相互融合才能构建完整的国家信息基础设施,才能真正实现网络强国和航天强国,这正是我国开展天地一体化信息网络重大工程建设,并在新基建中启动卫星互联网建设的意义所在。就卫星直播电视市场而言,主要问题在于地面有线电视和卫星直播电视之间的利益平衡。从信息服务产业的客观规律看,IPTV、OTT TV取代地面有线电视将是必然的结果。而卫星直播电视由于具有信息传播的广域性、等时性、高效性、可靠性,本将可以长期存在下去。

值得注意的是,互联网和移动互联网之所以蓬勃发展、深入人心,主要得益于技术、网络和市场等方面的开放性。在未来的天地一体信息基础设施中,卫星互联网以及卫星导航和卫星遥感能有多大规模的发展同样依赖于技术、网络和市场方面的开放性。就消费者宽带接入市场而言,主要问题在于地面光纤传输和卫星传输的成本效益权衡。地面光纤传输的成本是线性增长的,用户越是遥远、分散,成本越高,而卫星传输与距离无关,广域覆盖、远程通信是其天然的优势。

因此,我国卫星通信行业需要突破卫星直播电视和消费者宽带接入的政策壁垒,才能将国内市场做大、做强,进而才能有资格参与竞争更为激烈的国际市场的角逐,这是6G时代卫星通信行业不可回避的生存法则。

十二、星谷研究院

新型研发机构的起源、定义、类型和特点

(一)新型研发机构的起源

国内新型研发机构起源于 21 世纪初期的深圳、广州等地区,其产生过程存在一定现实背景,包括解决市场对科技成果的需求不断增加、成果研发主体和应用主体协调与匹配不足、存量科技资源与市场无法自动进行对接等现实问题,因此,需要在科技体系内构建一类新形式的组织机构。随着投入主体、组织模式和运行机制等各方面的不断演化发展,人们逐渐意识到新型研发机构在技术创新、科技成果转化和人才聚集等方面所具有的重要功能。目前,全国各种形态的新型研发机构呈快速增长的发展态势,正逐渐发展成为区域产业转型升级的新引擎,以及推动科技体制机制创新的试验田;此类新型研发机构的典型代表包括北京量子信息科学研究院、北京脑科学与类脑研究中心、北京智源人工智能研究院、上海紫竹新兴产业技术研究院、深圳华大基因研究院、江苏(昆山)工业技术研究院、中石化重庆页岩气产业技术研究院等。

(二)新型研发机构的定义

为深入实施国家创新驱动发展战略,推动新型研发机构健康有序发展,国家科学技术部2019 年印发的《关于促进新型研发机构发展的指导意见》中对新型研发机构给出了权威定义:新型研发机构是聚焦科技创新需求,主要从事科学研究技术创新和研发服务,投资主体多元化、管理制度现代化、运行机制市场化、用人机制灵活化的独立法人机构,可依法注册为科技类民办非企业单位(社会服务机构)、事业单位和企业。可以看出,新型研发机构的定位首先是开放、合作的载体和平台,能够有效整合资本、技术、人才及市场等创新资源,为传统科研院所、高校及项目团队等创新主体与资本市场牵线搭桥 ;其次,新型研发机构需要有产业链整合能力,不仅仅聚焦于专利、软件著作权、技术秘密及电路布局设计等技术成果,更要注重产业、资本与市场的互动,实现创新要素的全方位对接。

(三)新型研发机构的类型

从主导发起者的角度进行划分,新型研发机构最常见的组建模式有 3 种:一是院校与政府共建型,即一个或多个高校、科研院所与政府共建类似创新院类型的新型研发机构,这是目前最主要的类型 ;二是院校与企业共建型,一个或多个高校、科研院所与企业共建类似联盟和实验室性质的新型研发机构,这种类型数量最少 ;三是企业自建型,企业或其他单位自行筹建的企业类型新型研发机构,这种类型的研发机构数量居中。以单位性质区分,新型研发机构主要可以分为事业单位、企业形式和民办非企业,其中事业单位形式主要指由科研机构、高校、地方政府等主导设立的创新院类型事业单位,但采用全新的管理和运行机制,如北京量子信息科学研究院、北京脑科学中心等单位;民办非企业类型主要指以民办非企业身份在当地民政部门登记注册,采用市场化运作,自主经营,自负盈亏 ;企业类型指采用完全市场化的股份公司制运作,没有编制和事业单位经费支持。

(四)新型研发机构的特点

2019 年,科技部印发的《关于促进新型研发机构发展的指导意见》中对新型研发机构的设立条件进行了明确界定,包括 :法人资格、业务范畴、设施条件、人才队伍及经费来源等。创新院的发起者需要具备独立法人资格,拥有健全完善的内控制度 ;从事学科基础研究、应用基础研究,产业共性关键技术研发、科技成果转移转化,以及研发服务等业务;在项目研发、试验、服务等方面拥有必需设施 ;项目团队结构合理稳定、研发能力较强 ;经费来源相对稳定,主要包括出资方投入,技术开发、技术转让、技术服务、技术咨询收入,政府购买服务收入,以及承接科研项目获得的经费等。同时,新型研发机构的核心在于市场化运作,普遍采用合同制、匿薪制、动态考核、末位淘汰等管理制度,自主面向社会公开招聘人员,建立与创新能力和创新绩效相匹配的收入分配机制。

研究院的组建多为“政府搭台、科研院所牵头、高等院校参与”形式,创立之初便旗帜鲜明地表示要以国家发展战略需求为根本出发点,服务于行业或区域重大技术发展需要,立志围绕科学技术尖端领域的前瞻性问题,以及涉及国计民生的重大公益性问题,集聚一流的创新团队,形成一流的创新氛围,产出一流的创新成果,培养一流的创新人才。从2017年开始,北京市积极搭建关键技术创新平台,组建由顶尖人才领衔的项目技术团队,鼓励和支持科学家勇闯科技前沿“无人区”,相继组建了北京脑科学与类脑研究中心、北京智源人工智能研究院等研究机构。北京脑科学与类脑研究中心作为北京市重点推进建设的新型研发机构之一,将重点围绕共性技术平台和资源库建设、认知障碍相关重大疾病、类脑计算与脑机智能、儿童青少年脑智发育、脑认知原理解析等 5 方面开展攻关,力争在脑科学与类脑科学研究领域实现前沿技术突破;北京智源人工智能研究院将按照国家新一代人工智能发展规划总体部署,支持科学家探索人工智能科技前沿,推动人工智能理论、方法、工具、系统等方面取得变革性、颠覆性突破,引领人工智能学科前沿和技术创新方向,支撑人工智能产业发展,促进人工智能深度应用 ;除此之外,还有北京量子信息科学研究院等其他新型研发机构。

 

国外卫星通信企业破产分析报告(1)
国外卫星通信企业破产分析报告(2)
商业航天2022:少谈多干,落地区域经济圈进行时  |   政府发展商业航天,赶早不赶晚
中国发射次数全球第一:2021全球航天发射活动分析报告
面向 6G 的星地融合一体化组网研究
低轨宽带星座是一场有进无退的冒险| 中国的商业航天创业者与马斯克的不同

星谷物联网应用设计研究院

卫星监控监测,物联网传感技术,技术进口应用及设计研究,卫星产业特色小镇建设开发,产业园经营开发管理,会议及展览服务,专业设计服务与咨询。

天广卫星电视

互联互通平台建设成为实现涵盖媒体运营、卫星通信、卫星宽带互联网;支持”一云多屏,多屏互动”的传播;融合移动网络与电视特征为一体的多终端、立体化传播窗口,是新形态的全媒体播出机构。

乌兰察布星谷卫星产业园有限公司

乌兰察布星谷卫星产业园有限公司

 

龚学理论总结

龚学理论是一个终极统一理论(Final TOE)

一个终极统一理论(Final TOE)是一个真正的万物理论,必须包含一切(物理,数学,生物科学,意识,等等)。

本摘要将显示龚学理论的框架与统一关系。

1,第一原则:宇宙的本质原理:

宇宙的本质原理:宇宙的本质是虚空,并保持虚空的不变性。这是第一性的原理,表现: 时间量子、时间量子迭代(形成时间管、分形)、时间管螺旋形成时间锥(4个时空维度 + 7个内维度)。

2,第二原则:创造的原则: 混沌结构从彻底随机性的机制中(虚无)创造秩序(物质世界,包括生命)。

这个原则确保这总随机海中的必然出现秩序。任何结构性(系统性)破坏都无法改变总随机海中的秩序。

表现形式: 二阶表现形式为11维宇宙,膨胀的宇宙,涌现的统一力(导致不确定性原理)。每一个横截面(在任意给定的时间 t 切割) ,它需要11个维度来识别。3通用空间维数来确定切口的位置与时间相关的软管锥。3空间维度来识别软管外圆上的点。3个空间维度来确定软管内圆上的点。1维来识别软管中的空隙。1维来确定这个点的方向。(3 + 3 + 3 + 1 + 1) = 11维。

3,第三原则,约束原则: 保证任何创造不能改变以前所有层次的创造。

即使存在一个破坏者或称之为捣蛋鬼机制,也不能改变涌现的确定性。参看( https://tienzen.livejournal.com/1026.html 或 http://prebabel.blogspot.com/2014/02/ghost-rascal-conjecture-andultimate.html )

4,第四原则:表征体现–缩放原则

第四原则:宇宙万物演化通过分形过程(相似性过程)确保有缩放原则。第1部分: 所有扩展(或新创建)遵循层级迭代定义的缩放原则。第2部分: 通过二、三道锁(一些自然常量)来确保。第一道锁: { c,光速; h-bar,planck 常数}。第二道锁: 阿尔法(电子精细结构常数。第三道锁:龚学统一的力方程可以改写为:XYZ=C;(非奇异三次多项式){X=delta T时间量子;Y=delta S空间与粒子,由创世方程0给出,Z=F(力),量子力方程;C=a,常数)。

此外,所有的创造物都受到缩放原则(分形)的限制,亦即进化原理。也就是说,统一的力(用分形表示)是宇宙演化的主导力量:重子创生、物质空间形成、暗能量和暗物质的比例。

三阶表现:XYZ=C的数学表述与数学ABC问题同源。分形、椭圆曲线和圆环(7色/维表示)椭圆曲线是非奇异三次多项式的子集。圆环是椭圆曲线的子集。物质粒子的创生就是这个圆环面的构件,它们构成了物质粒子。

Part 1: it is ensured via the fractal process (the similarity processes): all expansions (or new creations) follow a defined scaling rule. Part 2: it is ensured via a double lock (some nature constants). First lock: {C, light speed; h-bar, Planck constant}. Second lock: Alpha (electron fine structure constant}. This principle governs the evolution of the universe.

The Unified force equation can be rewritten as: XYZ = C; (a non- singular cubic polynomial) {X = delta T, Y = delta S, Z = F (force), C = a constant) The phase diagram for the solution of a cubic polynomial is a FRACTAL (representation for the iteration of the time quanta and as the manifestation of the 3rd principle). The creation and confinement are the two sides of the same Ghost Rascal coin. Ghost Rascal is an order creation agent while cannot change the essence (the total randomness /nothingness). Furthermore, all creations are confined via a scaling principle (the fractal), the principle of evolution. That is, the unified force (expressed as fractal) is the governing force for the evolution of the universe: baryongenesis, dark energy and dark matter.

The 3rd order manifestations: fractal, elliptic curves, and torus (7 color/dimension representation) Elliptic curve is a subset of the non- singular cubic polynomial. Torus is a subset of elliptic curves.

5,第五原则: 个性化原则。每一个创造都有别于其他创造。也就是说,每一个创造物(时空行为)都必须被唯一地标记(标识,例如用量子数字)。这一原则是高层次意识——意识原则兴起的基础。这个标记也是熵的基础。

这个原理是通过环面7色定理来实现的,可以用7种颜色唯一标记无限不可数的环面。也就是说,所有的创造物(夸克、生命、数学等)本质上都必须是一个环面,或者用环面语言来描述。这表现为熵和 cc (宇宙学常数)。

事实上,夸克和轻子是用七色语言描述的。这种前夸克表示(七色语言)是直接通过时间量子(包含4个时间维度,方程为零)导出的。数学和生命也可以用七色语言来描述。第四阶表现: 量子引力/费米子自旋,在这种量子引力中,每个费米子(g 弦)的一端被绑在一个固定的(鬼魂)点上,而自由端则围绕该点旋转。也就是说,费米子的量子自旋(1/2)是这种量子引力的结果。费米子自旋(1/2)是量子引力的结果。这种费米子自旋也可以看作是鬼影点和物质宇宙之间的粒子弹跳。表现形式的五阶: 秩序的创造(物质的宇宙、生命、数学、自然常数等等)。这个 cc 的计算完全基于第四原则; 每个创造物(时空行为)都是唯一标识的。自然常数是第三原则的第二部分: 限制/进化原则。

更多信息,请看龚先生的原文:final-toe-summary.pdf

or final-toe-summary.pdf—

https://tienzengong.files.wordpress.com/2020/04/final-toe-summary.pdf

 

母校老师余贻鑫院士讲座:双碳目标-智能电网-工业革命

2021年10月18日15:00在我校广学楼报告厅,我校邀请到天津大学余贻鑫院士做科技发展前沿讲座。

20211103104041 20211103104042

360百科介绍:余贻鑫,1936年11月06日出生于北京市密云县,电力系统分析、规划与仿真专家,中国工程院院士天津大学教授,天津大学电气工程一级学科负责人。

余贻鑫于1963年从天津大学硕士研究生毕业后留校任教;1980年至1982年赴美国加州大学伯克莱分校做访问学者;1983年加入中国共产党;1990年至1991年在美国华盛顿大学(西雅图)做高级访问学者;1995年至1997年担任日本九州工业大学电力系统控制专题讲座首席客座教授;1997年担任天津大学校学术委员会副主任;2005年当选中国工程院院士。

余贻鑫长期结合电力系统工程实际进行深入的电力系统稳定性理论研究,特别是在电力大系统安全监视、防御与控制中域的方法学方面,取得了开创性的国际先进成果,并在世界上首次把该成果用于实际电力大系统 。

20211103104429

一、报告的主题:双碳目标-智能电网-工业革命

部分内容:

20211103113119 20211103113141 20211103113202 20211103113213 20211103113240 20211103113256 20211103113312 20211103113327 20211103113339 20211103113418 20211103113433

 

20211103104618

余院士主推分布式能源智能电网系统。

二、荣光的母校、优良的传统

天津大学学校简介-天津大学 http://www.tju.edu.cn/tdgk/xxjj.htm

天津大学(Tianjin University),简称天大,其前身为北洋大学,始建于1895年10月2日,是中国第一所现代大学,开中国近代高等教育之先河。“甲午战争”失败后,学校在“自强之道以作育人才为本,求才之道以设立学堂为先”的办学宗旨下,由清光绪皇帝御笔朱批,创建于天津,由盛宣怀任首任督办。学校初名北洋大学堂,内设头等学堂(大学本科)和二等学堂(大学预科),头等学堂设四个学门:律例、工程、矿务和机器。

长期以来,经过全校师生的不懈努力,天津大学已成为一所师资力量雄厚、学科特色鲜明、教育质量和科研水平居于国内一流、在国际上有较大影响的高水平研究型大学。

天津大学设有卫津路校区、北洋园校区和滨海工业研究院校区。卫津路校区占地总面积136.2万平方米,北洋园校区占地总面积243.6万平方米,滨海工业研究院校区占地总面积30.9万平方米。学校现有全日制在校生38158人,其中本科生19337人,硕士研究生13729人,博士研究生5092人。现有教职工5069人,其中院士14人,国家“杰出青年科学基金”获得者58人,国家“优秀青年科学基金”获得者67人,中组部“万人计划”领军人才41人,青年拔尖人才19人,教授898人。

电气自动化与信息工程学院-天津大学 http://www.tju.edu.cn/info/1044/1250.htm

电气自动化与信息工程学院的前身可追溯至1933年成立的北洋大学电机系,至今已有八十多年的办学历史,素以严谨治学、务实求真而闻名。先后培养出曾任清华大学校长的高景德院士,北京邮电大学校长叶培大院士,发电工程与设备专家梁维燕院士,电力系统继电保护专家、俄罗斯工程院院士贺家李教授,电力系统分析、规划与仿真专家余贻鑫院士,电机工程专家刘锡英教授,通信专家周炯磐院士,数字通信专家李乐民院士,内燃机专家史绍熙院士,自动控制和系统工程专家刘豹教授,国际电气电子工程师学会(IEEE)终身院士何振亚教授,国际电机领域知名专家陈之藩教授,光纤通信专家杨恩泽教授,电视与图像信息技术专家俞斯乐教授等一批专家学者。改革开发后,还培养了夏长亮,2017年当选中国工程院院士,担任天津工业大学校长。今年最新增选了王成山院长为中国工程院院士。共培养了10名以上两院院士及外籍院士。

学院还培养了原吉林省委书记王云坤、原天津大学校长吴咏诗、李光泉,原天津大学党委书记杨渝钦,天津工业大学校长夏长亮、原南京师范大学校长书记胡敏强,包括原清华大学校长的高景德院士,原北京邮电大学校长叶培大院士等10余所高校正校级领导。还有著名企业家荣智健等为代表的一大批各类杰出人才。

学院师资力量雄厚,现有教职员工301人,其中,教授74人,副教授101人,讲师49人,师资博士后5人。拥有中国工程院院士、俄罗斯工程院院士、长江学者特聘教授、“973”项目首席科学家、国家杰出青年基金获得者、国家优秀青年基金获得者等在内的一支高水平教师队伍,一些团队入选教育部创新团队、科技部重点领域创新团队。

学院设有电气工程系、自动化系、电子信息工程系、通信工程系、现代电工电子技术中心、电气电子实验教学中心、电气与自动化实验中心等4个系和3个中心,设电气工程及其自动化、自动化、电子信息工程、物联网工程、通信工程、智能电网信息工程6个本科专业。每年本科生招生近600人,全日制研究生近500人(硕士研究生400人,博士研究生100人),在校生4000多人。

学院现有电气工程、控制科学与工程、信息与通信工程等三个一级学科,均具有博士学位授予权,并分别设有博士后流动站。

三、密切的学术交流和亲密的同学友情

在当天余院士报告的提问环节,我对余院士说建立国际电力能源环球调度网在未来是有可能的,至少是一个理想!

分布式电网的上层,应该是建立国家统一电网。这个应该是国家战略考虑的事情。

我班同学帅军庆曾担任过国家电网副总。就此问题,我们和帅军庆同学还一起探讨过,全球能源电网的环球调度。这应该是能源系统的整体与局部的协调平衡,全球各区域存在电力供应与需求存在白昼与黑夜周期性互补特征,这个就是环球电网调度的可能。

当天晚上在我们大学同学群里 ,帅同学说:小坚同学说的对!我们国家电网为了保障国家“双碳”实现,正在构建新型电力系统。这是各级电网、各种类型电网、各种综合能源的有机协调共融的新型电网。

帅同学介绍了国家电网的一些工作:

20211103105939 20211103110115 20211103110149 20211103110217 20211103110229 20211103110255 20211103110315

帅同学的观点,代表国家电网的主张更有全局观念!的确要有国家战略!例如,我们买俄罗斯的电,我们还卖给越南电呢。电力原则上比石油输送还是要方便一些,石油可以环球管道输送,电力原则上更可以。这个就如同国际互联网也有根服务器与海底光缆联通的全球互联互通。

学术交流促进学科发展及技术的推广应用!相信母校和同学老师会取得更大的成就,创造更加美好的未来!

转:杨振宁的最后一战

杨振宁的最后一战

https://mp.weixin.qq.com/s/XoZlPtH6TC0uAd0d3aP3fw

量子学派 今天(2021-9-30)

以下文章来源于醋话集 ,作者醋醋

醋话集.

深度八卦– 前文注:纯粹觉得这篇文章好读,并不代表“量子学派”的观点。

不管是支持还是反对,建造超大加速器这件事值得多方讨论。
本站推荐理由:此文值得一看。此文把标准模型以后的西方理论物理的窘境描写得很生动风趣幽默,是否应该建大对撞机也有理有据。本站转发后丢失所以精美图片,请有兴趣者,参阅原文。—–李小坚
https://mp.weixin.qq.com/s/XoZlPtH6TC0uAd0d3aP3fw
图片
The party is over.盛宴已过
杨振宁张开左手向上抬起微微摇了摇,加重语气补充翻译:什么意思?盛宴已过。虽然97岁高龄,杨振宁也只需一根拐杖就能走路,他坐在沙发上,拐杖斜放在腿边。台下,坐满了年轻大学生,一位男生站起来发问,脸上挂着愤懑、委屈不解。这是2019年4月29日,在北京雁栖湖畔中国科学院大学(国科大)新礼堂发生的一幕。

男生读研一,来自中国科学院高能物理研究所,未来即将从事CEPC(环形正负电子对撞机)的预研工作。

4年前,针对CEPC该不该建,杨振宁与男生老师,高能物理研究所所长王贻芳之间爆发了一场大战。

从事高能物理研究的人,都指望这个项目上马,不然他们在剩下的岁月中将无事可干。

前一阵子,任正非呼吁,要加强基础教育,砸钱砸不出来科学家。令人啼笑皆非的是,当代最基础的理论物理,恰恰把希望寄托在砸钱上面。

图片
作为一个超级费钱的项目,CEPC环形周长100公里,保守估计就得400亿。第二期SppC(环形强子对撞机)耗资更是超千亿。北京五环路全长98.58公里,这意味着,隧道可将整个北京主城区包在其中。宇宙第一房企碧桂园,做梦都不敢奢望拿下这么大一块土地CEPC-SppC,这简直就是物理学的三峡工程,高能所只是冲在前台的马前卒,背后强力推手,是国际超弦界。2014年开始,国际超弦界就组团来中国游说超级对撞机项目,不幸的是,2016年他们遭到杨振宁的强势阻击,当年发改委十三五项目审批,CEPC只差一票未能通过。这位高能所研一男生,从室友那听到小道消息,现在杨振宁不反对建CEPC了,于是怀着激动的心情,抢到了一张杨振宁的国科大讲座门票,想当面求证一下。

杨振宁第一句话就是我的看法没有变,迎头泼了他一盆凉水。他不仅一如既往反对建超大对撞机,还劝这位男生尽早转行,高能物理盛宴已过。人的一生呐,不能只看个人的奋斗,有时候也要看一看历史的进程。不仅高能物理的盛宴已过,当代物理学的前沿,也是一片无际的黑暗相对论量子力学有多辉煌,当代物理学就有多黯淡。

图片
2017年的引力波,2019年的黑洞照片喧嚣一时,那也只是验证了100年前的爱因斯坦广义相对论。2018年霍金去世,引发社会纪念热潮,但在大多数人的印象中,霍金身残志坚,是科普畅销书籍《时间简史》的作者。
霍金的科学最高成就黑洞辐射理论,知道的人并不多。杨振宁科学成就比霍金更高,但人们热衷他的晚年生活。人们一提到牛顿就会想到万有引力,提到爱因斯坦就会想到相对论。人们关心霍金、杨振宁的生活而不是科学,不能怪大众猎奇,当年牛顿与爱因斯坦的那些事儿更生猛。只能说,当代物理理论不如前辈,普通人不懂相对论,总知道原子弹,不懂量子力学,电脑互联网总玩过吧。当代物理又发现创造了什么?

这是杨振宁的最后一战,他拯救不了当代物理,而是遏制危机爆发后的疯狂

01
2019年11月3日,第7届腾迅WE大会现场,布赖恩·格林(Brian Greene)在台上拨动“宇宙的琴弦”。作为世界最负盛名的超弦传教士,格林是多本科普畅销书的作者:《宇宙的琴弦》,《宇宙的结构》,《隐藏的现实》……孜孜不倦从事超弦理论的公众普及。面向台下听众,格林再次舌绽莲花,讲解超弦理论及其衍生品多重宇宙。随后,王贻芳上台,从中微子实验讲到超大对撞机。国际超弦界与中国高能所,还在坚持不懈。

图片
自2014年造势,于2016年十三五规划遇挫后,他们期望在十四五规划上通过项目。2021-2025年是十四五规划,CEPC-SppC造势,要提前两年开始,2019年很关键。纵观全世界的对撞机,LHC已是强弩之末,不会有新的发现了,别的对撞机能级太小,更加指望不上,全世界物理学家唯一的希望,都押在中国的CEPC-SppC的身上。这是人类世界中最靠近窗户的一群人,看窗外,漫漫长夜。禁闭在一间密室的人,找遍钥匙无果,就会竭斯底里用力撞门,哪怕那么一丝可能。

不甘、愤懑、呐喊、无奈、绝望……这是物理学家的痛苦,普通人根本就感受不到这间密室。

事实上,就算CEPC-SppC顺利获批,要全部建成,也得2040年以后了,他们中的大多数人,都看不到那一天,不过是留一个念想。

2016年,霍金艰难地打出226个字力挺对撞机。2018年,霍金阖然长逝。

王贻芳坦诚,推动我国建设CEPC,是他在现在的科学岗位上的最后一桩心愿。

如果我没有提,是没尽到责任。

支撑王贻芳的情怀,全世界物理学家的希望,首期360亿二期超千亿的天量资金,仅仅只有两个字——幸运。

图片
CEPC唯一确定的科学目标,就是精确测量希格斯粒子,即所谓的上帝粒子,如果不能保证超越现有物理框架标准模型,那就跟测量牛顿引力常数的意义差不多,但是谁又能保证呢?公认可以突破标准模型的实验,一是邻近核反应堆的中微子振荡,王贻芳在大亚湾核电站做出了突破性贡献;二是远离核反应堆不受中微子干扰的暗物质探测,世界最深的实验室——四川锦屏山暗物质实验室正在努力。精确测量希格斯粒子突破标准模型,希格斯本人还健在,奇怪的是,在任何公开报道中都没有看到他站出来发表一下期待。王贻芳也只是说如果有所发现,就启动第二期工程SppC,把正负电子对撞换成质子对撞,这还是奔着物理界期待了40多年的超对称粒子而去。
图片
预言该粒子的超对称理论,最有可能突破标准模型,也是另一个野心更大的万有终极理论候选者——超弦的超的来源。在数学框架上,超弦有望统一量子力学广义相对论,它认为世间万物都由一根振动的弦组成。从最小的基本粒子,到最大的宇宙天体,无论是黑洞的本质,还是宇宙的起源,都要匍匐在超弦脚下。但是为了满足数学自洽,人类付出的代价是颠覆我们的宇宙观。在超弦的设定中,我们的宇宙其实是一个11维时空,我们只能感受到三维空间一维时间,另外7个空间维度不见了,超弦给出的解释是被紧化了,空间就像一张膜,紧化就是将其卷起来了, 卷到了极小不能被看到的尺度。

一共有10^500种紧化方式,每一种都对应一个宇宙,我们的宇宙只是其中的一个,这就是多重宇宙的由来。

10^500这个数字有多大?想象一下1后面排500个0,什么亿啊兆啊都是毛毛雨,我们的宇宙原子总数也就10^80个,相比隐藏的宇宙数量,连九牛一毛都不如。

最近知名美剧《生活大爆炸》全剧终,回顾第4季20集中,格林亲自扮演自己,向主人公谢耳朵推销他的新书《隐藏的现实》

有人认为谢耳朵的原型就是格林,其实恰恰相反,谢耳朵的原型是粒子物理学标准模型奠基人之一谢尔登·格拉肖(Sheldon Lee Glashow),超弦的铁杆反对者。

没有什么现实可以被隐藏,编剧显然参考了现实原型,尽管有格林的推销,谢耳朵后来还是放弃了超弦理论的研究。

格拉肖的高中同学,标准模型的另一位奠基人斯蒂芬·温伯格(Steven Weinberg),抵挡不住终极理论的诱惑,选择臣服超弦,成了白袍巫师萨鲁曼。

标准模型走在量子力学最前沿,也是当今理论物理的最高成就,标准模型的后继者是超弦。

图片
根据超弦的理论设定,要想撞出弦来统一四种力,需要环银河系长度对撞机,科幻小说都不敢这么写。温伯格选择“曲线救国”,致力于验证超弦的”超”,也就是超对称理论,它能将物质统一起来。爱因斯坦的相对论,把质量能量统一起来,搞出了原子弹氢弹,物质统一了,那不晓得搞出什么吓人东西。超对称理论预言的超对称粒子没有超弦那么变态,理论上在TeV(万亿电子伏特)的能区就能撞出来,LHC的最大能级是13TeV。虽然这是地球人可以做到的,但必须建立巨型对撞机,需要成百上千亿的经费,LHC前前后后就花了100亿美元。超弦与高能物理联手,意味着玄奥的思想与庞大的利益结盟。

这是一个很妙的组合,超弦永远无法被证伪,但如果局部证实,就能够屹立不倒。这就跟宗教一样,上帝的仁慈永远触摸不到,但是教会能让人感受到实实在在的关爱,当然还有连绵千年的香火钱。

超弦与其说是一个学派,还不如说是一个教派。

这可不是我们说的,超弦界自己戏称扛把子爱德华·威滕(Edward Witten)为Pope,也就是教皇的意思。

02
1987年,温伯格主导美国SSC(超级超导对撞机)建设,希望撞出超对称粒子,验证超对称理沦。时值美苏争霸,美国力求在军事、科技等各方面碾压苏联,对登月、“星球大战”这样的鸡血项目来者不拒,SSC号称能帮助人类解决宇宙起源问题,完成物理终极理论的梦想,里根二话没说就批准了立项。
图片
当年温伯格报出的预算不多,只有区区44亿美元。转眼到了1993年,美国总统换了两茬,里根走了布什上,布什走了又来了克林顿。美国人搞工程费时还费钱,6年时间他们连安放对撞机的隧道都没挖好,就花了近20亿美元,而总体预算更是飙升到近百亿美元。这个时候苏联已经解体,美国人独孤求败,社会上下对鸡血项目不是很感兴趣。克林顿作为平民总统,更加关注提振美国经济,天天盯着政府不让大手脚花钱的国会不干了,几轮听证会后硬是叫停了SSC。美国超弦教一片哀嚎,所幸当时欧洲搞了个大型环形正负电子对撞机(LEP),隧道是现成的,只要把正负电子对撞机换成强子对撞机就好。超弦教找到欧洲核子研究中心(CERN)时任总干事卢埃林·史密斯(Llewellyn Smith),向他分析物理界天下大势,美国佬不干了,执牛耳者唯有欧洲。

图片
双方一拍即合,1994年圣诞节前夕,CERN批准了欧洲大型强子对撞机LHC的立项。对于超弦教来说,就算LHC是世界上最大的机器,也只是个迷你版的SSC,其环形周长27公里,不到SSC的1/3,但有总比没好,而且根据理论推测,LHC的能级可以撞出超对称粒子,足以满足超弦教的需求。格林很兴奋,在2004年出版的《宇宙的结构》,他断言LHC开机运行后能发现超对称粒子。由于选错了焊接工艺,2008年9月LHC开机后9天,超导电磁铁的电路就烧坏了。其后用了一年多才修好,但是只能以原设计能量14TeV的一半7TeV运行,这一阶段维持到2013年。即便如此,超对称理论的原始参数空间已经有99.9%被否定掉了。
2015年6月3日,LHC将能量提升到接近设计峰值的13TeV,仍未发现超对称粒子的迹象,99.999%的超对称理论原始参数空间荡然无存。超弦教只好改口,称预估的能级,是超对称理论与标准模型“自然结合”后的计算结果,没有撞出来超对称粒子,它们的结合方式可能并非“自然”,需要更大能级的对撞机才能发现超对称粒子。
图片
尼马-阿卡尼-哈麦德(Nima Arkani-Hamed),发扬了多重宇宙学说,是超弦教的后起新秀,2013年12月来华担任高能所前沿研究中心主任,做了国际超弦教的中国内线,负责联络组织各种活动。他在20多年前就说过,1TeV就能看到超对称粒子,后来被实验打脸,又改口称得100TeV才行,这差不多就是CEPC的升级版SppC能量峰值。这等说辞,连我等普通人都听得出来在耍流氓。没有理论预测,或者随意调整预测,谁知道多大能级才撞得出来,花费成百上千亿建造大型对撞机,只有0.001%的胜率,这还是瞎猫碰上死耗子的结果。科学项目其实跟创业项目一样,你至少要画一个PPT说服投资人出钱,张口就说我要做马云,你投我一块钱,我还你一亿元,我信你个鬼哦。

国科大讲座上,面对高能所研一男生的不满,杨振宁吐露肺腑之言。

“这个实验做完了以后,这个机器不能再做下去了,要造更大的对撞机,需要花更多的钱,至少要200亿美元。”杨振宁说,“别的国家没钱,大家说中国有钱。”“我知道我的同行对我很不满意,说我(的反对)是要把他们这行给关闭掉。可是这个对撞机要花中国200亿美元,我没办法能够接受这个事情。”杨振宁说。上世纪80年代,中国搞北京正负电子对撞机(BEPC),虽然没有提出什么宏大理想,但是对于实现什么样的科学目标可是一清二楚,李政道丁肇中等华裔诺贝尔科学家也来积极推动这件事。而这一次,他们保持了沉默,丁肇中还是王贻芳的老师,高能物理界的大师级人物。
图片
2016年,据研究理论物理的中科院院士何祚庥透露,丁肇中问及王贻芳最近忙啥,何说他想把SSC搬到中国来,丁肇中立马就说,“一点意思都没有”。撞不出超对称粒子,超弦教在物理界的地位岌岌可危,从众星捧月千夫所指,有重蹈当年以太说覆辙的风险。超弦教埋怨LHC太小了,如果按照SSC的规模,这些问题都可以迎刃而解,他们把目光瞄向中国。当今只有中国,才有这么大的财力与抢占基础科学制高点的渴望,才有可能上马这个超千亿的物理学三峡工程。SSC复活的希望,在中国。

03
2014年,国际超弦教高能物理研究所联手造势,组团来中国游说。当年2月23日,在清华大学举办了一场“希格斯粒子发现之后,基础物理学向何处发展?”的讲座,超弦教主威滕、教主导师戴维·格罗斯(David Gross),以及其他几位超弦干将悉数到场,王贻芳在会上发言。格罗斯曾经提出“渐近自由”理论解释强力,获得2004年诺贝尔物理奖,该理论是标准模型的支柱之一。威滕是他教出来的最得意的弟子,两人都是犹太籍物理学家。1999-2003年在任的CERN总干事鲁加诺·玛亚尼(Luciano Maiani)也在会场,有人问他,欧洲的加速器是怎么做到让各国都掏钱的?玛亚尼回答很干脆:

忽悠啊,我们说这是为了与美国、俄罗斯等国的加速器竞争。
正如其所言,有亲历者回顾,那天本以为是高端物理学科普讲座,好不容易早去抢了个座位,结果听了一会发现这是个电视购物栏目……各种推销。推销员很多,商品只有一个,就是中国版超级对撞机,超弦教负责讲解宇宙起源等科学意义,以及对中国一片大好的国际形势,王贻芳负责说明具体实施。一虚一实的组团差不多就此定型,以后凡有超弦教来华,必有王贻芳的身影。
图片
2015年,格罗斯在《华尔街日报》撰文《中国的科学大跃进》,力挺中国超大对撞机计划,生怕他的文章中国人看不到,他还特意让人翻译成中文。作者忍不住多说一句,格罗斯如果懂得中国多一些,就会知道大跃进在中国并不是什么好词。2016年8月1日,国际弦理论大会(Strings 2016)在清华大学举行,还是那拨人马,还是那套说辞。世界物理中心将转移到中国,天下英才尽入彀中,溢出效应将让中国人受益无穷。CERN计算机科学家蒂姆·伯纳斯-李(Tim Berners-Lee)发明的万维网WWW,是证明粒子对撞机溢出效应最常用的例子。

万维网1980年就开始设计部署,1991年对外开放,最初是为了方便CERN内部协作,不关粒子对撞机啥事,与1994年立项2008年开机的LHC更没有一毛钱关系。

群体合作总会产生偶发不可预期的溢出效应,可能是好事,也可能是坏事。

炼丹也有溢出效应,那就是火药。

一个多月后,一场关于中国该不该建超大对撞机的争论成为公众话题,继而引爆全球。

图片
2016年9月4日,杨振宁授权微信公众号“知识分子”署名发表他的文章《中国今天不宜建造超大对撞机》,刷刷刷连出七剑,剑剑穿心。杨振宁列举的7条反对理由,涵盖了项目预算超支、影响民生经济、挤压其他科研经费、不能实现预期科学目标、即便有发现也无法实用、中国为欧美作嫁衣裳,以及展望物理学未来两个发展方向。当天王贻芳就奋笔疾书,洋洋洒洒6000言,一一反驳杨振宁的反对理由,第2天也通过“知识分子”发了出来。如果高能所有一个成熟的公关团队,一定会拦住老王“stop!”利益所在,怎么说都是错,说得越多错得越多。超弦教只能在心里骂猪队友。

而后更多科学家卷入争论,遍布国内外,除了奋战在第一线的新锐,还惊动了很多已成为江湖传奇的耆硕。

这其中就有当时还在世的霍金。

然而论学术成就,霍金也是这帮人中的小字辈。因为他们纷纷出来表态,不少人惊呼,教科书上那一串名字居然还活着。

虽然场面火爆,公众看到的其实都是马后炮,早在之前来自科学界的争议,就让王贻芳的超级对撞机计划遭遇挫折。

图片
2016年6月16日,王贻芳的团队得到科技部3600万人民币资助,用于CEPC的预研。但在当年7月,发改委十三五项目评审,CEPC仅以一票之差未能通过下一轮8亿人民币的资助请求。据可靠消息称,当时5票赞成,6票反对。赞成的全是高能领域,反对票里5票是非高能领域的专家,1票是政府方的代表。除了屁股决定脑袋的支持,其他无论是从科学还是政经角度考虑,都投出了反对票。王贻芳完败。

04
一般情况下,科学家茬架,都在科学共同体内找场子摆平,极少以菜场大妈的方式在大众媒体上吵个面红脖子粗。当然这些科学话题大众也听不懂。这次有关对撞机的争论,能够在2016年形成一场物理学的世界大战,余波传到2019年,为我等酱油党的日常八卦添加佐料,一是因为对撞机耗资相当于一座三峡大坝,已不仅是一个纯粹的科学研究,而是涉及广泛的社会工程。二来更深层次的原因在于,现代物理学产生了深刻的裂痕,面临前所未有的危机,在科学共同体内,谁也说服不了谁,这样的争议,往往就会扩散到大众层面。就如英国脱欧,保守党与工党谁也搞不定谁,干脆全民公投。这个裂痕还得从爱因斯坦说起,量子力学与广义相对论不相容,爱因斯坦晚年致力于统一场理论,试图将量子力学的电磁力广义相对论引力合二为一,无果而终。

这不能怪爱因斯坦太贪心,引力与电磁力的方程,几乎就是一个模子刻出来的,这一对不在一起简直没天理,初中生见了都想撮合它们。

图片
引力方程
图片
电磁力方程
后来人们敲开原子核,发现量子力学除了电磁力,还有龟缩在原子核里面的强力弱力,本来是一对力变成了四种力,都可以凑一桌麻将了。这个时候杨振宁站出来,说咱们别管引力,先把电磁力、弱力与强力吉祥三宝给统一了,为此摸索出一套基于对称性与群论的数学框架,叫做杨-米尔斯规范场论。杨就是杨振宁,米尔斯是与他一个办公室的研究生。诺贝尔奖往往代表一位科学家的最高成就,极少例外,如爱因斯坦的相对论,杨振宁的杨-米尔斯规范场论,它们都是框架理论(framework),很难被实验全部证实,而与诺贝尔奖无缘。这些科学家,往往是天才中的天才巅峰上的巅峰。

图片
杨-米尔斯规范场论的框架之上,物理学家们建立起了一套基本粒子的标准模型,并实现了电磁力弱力的统一,姑且将他们称之为标模派。标模派个个都是西部老牛仔,手提粒子对撞机左轮枪,对准他们预言的61个粒子,有如树起的61个靶子,枪枪命中,几乎个个十环。由于是杨振宁提供的弹道机制,标模派每命中一枪,他的头上都会多一圈光环,其在物理学界中的地位,也愈加稳固和上升。1994年,规范场理论发表40周年,美国富兰克林学会颁给杨振宁鲍尔科学终身成就奖,颁奖词指出:杨振宁的规范场理论,可与牛顿的引力、麦克斯韦的电磁学、爱因斯坦的相对论相提并论。

但标模派的成功很憋屈,其创立之初就先天不足,没有把引力纳入其中,后来又发现了暗物质暗能量存在,我们可感知的61个粒子构成的物质只占宇宙4.9%。

另外,由于标准模型预言的大多数粒子都是高能状态下的粒子,无法独立存在于自然界,基本上不能实用,这也是杨振宁不看好对撞机发现的一大原因。

图片
标准模型就像是一个金鸟笼,把人类禁锢在笼中。有史以来第一次,科学家更希望找出理论的破绽,胜过证明理论的渴望。然而讽刺的是,验证标准模型的实验数据与理论的预测,也是有史以来最匹配的,标准模型几乎牢不可破。这就好比玩密室逃脱,科学家们明知室外有室,他们疯狂地找齐61件物品之后,还是没有打开大门的钥匙,其失望可想而知。这个时候,作为物理学的超哥,超弦教站出来说,我能把引力囊括进来,我带你们去找钥匙。

超弦教凭借的是一本数学葵花宝典。

“葵花在手,江山我有。日出东方,唯我不败!”

超弦教一班人马,手提数学葵花剑,人挡杀人,佛挡杀佛,好不威风。

他们有一个难以启齿的难言之隐。

众所周知,要练就葵花宝典,须得满足八字真言,“欲练此功,必先自宫”

凡踏入超弦教,此生就得与实验验证的硬气彻底无缘,而实验才是物理学以及所有科学扬名立万的长枪短炮。

当初杨振宁提出杨-米尔斯数学框架,由于没有物理意义,被冰封了十几年,后来结合物理模型并被重整化(可精确计算),才成为神兵利器帮助对撞机瞄准射击扬名立万。

科学终究是热兵器的江湖,超弦教光凭一把葵花剑虚张声势,是走不出黑木崖的。

图片
超弦教教主威滕,拿遍了几乎所有的物理学大奖,甚至连号称数学界诺贝尔奖的菲尔兹奖都拿过,就是独缺一个诺贝尔奖。标模派是痛苦的枪手,超弦教是不甘的剑客。2012年超弦教找到俄罗斯互联网投资家尤里·米尔纳,搞了一个基础物理突破奖,奖金300万美元是诺贝尔奖的三倍,堪称科学界“第一巨奖”。由于评委会主席就是威滕,所以每年获奖者大多是超弦研究者或其盟友,如王贻芳就得过,今年的基础物理突破奖给了研究超引力的科学家,充分展示了什么叫做“肥水不流外人田”。后来谷歌公司创始人之一谢尔盖·布林、脸书创始人马克·扎克伯格及其夫人、中国腾讯公司董事会主席马化腾等互联网大佬也陆续加入,还分设了生命科学突破奖、数学突破奖等奖项。

今年的腾讯WE大会,有格林王贻芳参加,或许与此有关。

这系列突破奖无需实验验证也能获奖,摆明了就是叫板诺贝尔奖。诺贝尔奖只颁给经实验验证的科学理论,它不奖励聪明或成功,而是奖励正确。

成功只是暂时的,正确才能长久,所以突破奖搞了7年多,主要还是超弦教自嗨,但不得不承认,他们拉赞助的本事一流。

基础物理突破奖拿再多,也顶不了一个诺贝尔奖,而唯一可能通过实验间接验证超弦的,就是超对称理论。

图片
超弦教做梦都想拥有一杆枪,就是超级大型对撞机,当标准模型的预言被一一验证之后,还能鼓捣世界各国政府把天量的经费投入到高能物理中,超弦许诺超越标准模型,通往终极理论的梦想立下汗马功劳。这就是为什么超弦教拼命游说中国搞超大对撞机的背景。
05
在科学界,最早实名反对中国超大对撞机的不是杨振宁,而是一个叫王孟源的人。2015年1月与12月,王孟源写了两篇文章,《高能物理的绝唱》(一)(二),指责CEPC将大笔钱财当闪电,将快要死透的高能物理这具尸体转化成Frankenstein(弗兰肯斯坦)式的科学怪人,以行尸走肉式的存在撑到教授群的退休期。王孟源的文章发表在台湾的个人博客上,大陆没有梯子看不到,前后两篇文章发表了一年多时间,乏人问津。但王孟源的身份不简单,他是哈佛大学高能物理学博士出身,亲历过美国超导超级对撞机SSC的兴建与夭折,对高能物理圈与对撞机知根知底。
文章点名批评了丘成桐积极参与这个骗钱的把戏,他在2015年10月份与人合作出版了科普书《从长城到大对撞机》鼓吹CEPC。丘成桐是清华大学数学科学中心主任,首位华人菲尔兹奖得主,该奖号称数学中的诺贝尔奖。
超弦理论有一个基本概念,叫做卡拉比-丘空间,这里的丘就是丘成桐。前面超弦告诉我们,宇宙有7个维度被紧致化了看不见,如何紧致化的,它们跑去了卡拉比-丘空间。
图片
如果要说超弦教在中国有代言人,则非丘成桐莫属。超弦教组团来华的活动,都是丘成桐操办主持。很多人不明白为什么一个搞数学的,痴迷物理学装置,就是没有搞清楚丘成桐与超弦的关系,以及对撞机之于超弦的重要性。而将超大对撞机争论从科学界内部引向公众的始作俑者,也是丘成桐。2016年8月7日,丘成桐接受新华社专访,希望在长城入海处建设下一代巨型对撞机,这是CEPC首次大范围内向公众公开。新华社文章引发了广泛的社会关注,中国版大对撞机一时成为新闻热点,媒体自然不会错过这个选题。

有记者挖出王孟源的文章,一看是专业出身亲历第一线,猛料十足,还涉及丘成桐,就找到后者希望他能有所评论。

丘成桐应该是仔细看了这篇文章,2016年8月29日,他在微信公号“老顾谈几何”发表意见,详述自己扒出王孟源老底的过程。

如果爆料不痛不痒,丘成桐岂会care王孟源的背景身份。就如郭德纲说的,我正眼看你一眼都是输。

图片
作为哈佛大学兼任数学系与物理系的双料教授,丘成桐很意外自己从来没有听说过王孟源的名字。几经求证,丘成桐在哈佛大学的教授朋友们终于找到了王孟源的导师,原来是一个没有系中升职的助理教授,难怪哈佛资深高能物理学家不认识王孟源。丘成桐更是指出,王孟源博士毕业以后,就没有什么学术上的论文成就,而是转行做了几十年的生意。言下之意,王孟源没有资格在对撞机上面说三道四。这种论资排辈的人身攻击,一般人都会不爽。科学讲究客观实证,向来尊重事实,不看出身,想当年爱因斯坦还只是一个小小专利员。何况王孟源的哈佛大学高能物理博士学位并不假。

而且丘成桐当时还不知道的是,王孟源的导师是格拉肖的关门弟子,格拉肖想把超弦挡在哈佛门外无效,愤而离职,王孟源的导师也无法获得升职。

研究基础物理学发表论文,必须在数学上自洽,只能走超弦这条路。大学没有论文,地位就会下降,哈佛扛了一年扛不住,还是把超弦引进来了。

哈佛大学理论物理的主流教职,逐渐被丘成桐等超弦教占领。

当然丘成桐也是货真价实的顶级科学,不可能不知道贬人身份落了下乘,作者倒是觉着,王孟源点到了要害,面对记者的采访,丘成桐只好通过这个损招,来降低其文章的影响。

图片
只是千不该万不该,丘成桐提到了杨振宁,他不相信杨振宁会反对建对撞机,因为在他看来,对撞机的每一次发现,都会巩固杨振宁在科学界的地位。这一下就捅了马蜂窝,杨振宁借势公开发表文章反对中国建大型对撞机,原本在科学界的争论瞬间变成大众茶余后的谈资。这逼得王贻芳不顾利益相关人身份,亲自上场肉搏,估计心里也在骂猪队友。杨振宁为何不惜与科学界同行撕破脸皮,一点面子都不给丘成桐,这又与物理学界长达半个多世纪的撕裂有关。
06
弦理论于上个世纪70年代开创,蛰伏十多年后第一次革命爆发,升级为超弦后独霸理论物理界,却始终无法被实验验证,叠床架屋的论文堆砌,以及长期霸占各种学术资源,引来不少物理界同行的反感。2006 年, 超弦理论遭遇了一次重大的公关挑战, 两部“反弦”著作相继出版, 其中一本是圈量子引力论阵营的李·斯莫林(Lee Smolin)所写的, 书名是《物理学的困惑》,另一本则是哥伦比亚大学数学系助教彼得·沃特(Peter Woit)所写的, 书名更不客气, 叫做《甚至都不配称为错误》。两本书的副标题很直白,一个是“弦理论的兴起,科学的衰落”,另一个是“弦理论的失败与物理定律的统一”,前者明示弦论的崛起是物理学的堕落, 后者暗示弦论的完蛋是新生活的开始。
图片
这种“反弦”情绪在2015年达到顶峰,LHC基本排除了超对称理论的存在,物理学界多年来的期盼成了一场空。2015年,除了王孟源在中国开炮,还有另一群科学家聚首德国慕尼黑大学,于当年12月7日至9日召开了一场物理学界的“扩大会议”,群情激昂,声讨超弦与多重宇宙理论长期以来无法证伪,破坏了科学方法整体性以及科学在公众中的声誉。超弦教德高望重的教主导师格罗斯参会迎战。面对诘难,格罗斯舍车保帅,承认多重宇宙就算在理论上也无法观测,但仍坚持超弦是久经考验的革命战士,尤其是这么多年来,在通往终极理论的道路上,没有其他理论可以与之竞争。你们嚷什么嚷,光破还得有立啊!杨振宁对于超弦又是什么态度呢?

早在1986年超弦第一次革命成为物理界的显学之际,杨振宁中国科技大学研究生院第五次谈话就讲得很明白:

我很难相信这个理论最后是对的,超弦没有经过与实验的答辩阶段,它很可能是一个空中楼阁。如果你问我,我要不要去做超弦,我的回答是我在任何时候也不会去搞这种东西。我一定会去做纯粹数学,在纯粹数学中妙的东西很多。我为什么不用自己的时间和能力去做对数学有真正发展的工作,而去做既非物理又没有长久数学价值的东西呢?
07
以物理学为代表的科学有一个统一大业,将物质与规律尽可能还原成最基本的存在。就如围棋一样,千变万化的棋局背后都是一个统一的规则,以及黑白两子与棋盘。人类有个梦想,只要统一了物质的基本结构、物质的相互作用和运动转化规律,就会像上帝一样无所不知,无所不能。到时候宅男只要打个响指,就能变出个林志玲带回家。在这条统一的大路上,走着几个高大的背影,在伽利略统一了运动静止之后,牛顿三定律万有引力定律把天上和地上的现象统一起来,打开通往机械工业革命的大门。

图片
麦克斯韦紧跟其后,琢磨出一个方程组,统一了电、磁、光,各种宏观上的弹力、摩擦力都可以归结为微观上的电磁力,人类从此进入电气时代。爱因斯坦叼着烟斗走来了,他先用狭义相对论劝和了麦克斯韦方程组与牛顿力学,统一了低速与高速,时间与空间,再反手甩出E=MC^2,一个简单的质能方程引爆了原子弹。就在这时,高歌猛进的统一大业突然卡壳了,狭义相对论好说歹说,牛顿引力就是不听劝,爱因斯坦一怒之下,将引力赶出了物理王国,流放到几何空间,安置在广义相对论中。原来星球之间有引力,并不是它们吃了大力丸,而是吨位太重,将时空压弯了,引力是一种几何现象的呈现。
图片
在爱因斯坦忙着收拾引力的时候,一群科学家排成方队踢着正步走远了,这里面有玻尔、薛定谔、海森堡、狄拉克……量子力学山头上一堆大王,广义相对论山头上只有爱因斯坦一个光杆司令。爱因斯坦一看这还了得,天无二日,国无二君,量子力学岂能不服王化,他打磨统一场论,要收服这帮散兵游勇,可惜终其一生也未能北定中原。这个时候就轮到杨振宁上场了,他从口袋里面摸出一张皱巴巴的纸,说我搞了一套数学框架理论,有望统一电磁力、弱力与强力,咱们量子力学内部好说好商量,枪口一致对外,再去干引力
图片
这个数学框架就是前面提到的杨-米尔斯规范场论,当年杨振宁是硬着头皮站出来的,一副战战兢兢的样子可以理解,1954年发表论文的时候,他还没有拿诺贝尔奖,更要命的是,理论要求传播强力与弱力的规范玻色子没有质量,这与其短程力的物理现象矛盾。发现泡利不相容现象的泡利,也想过类似的办法,但是他一看这个矛盾就打退堂鼓了,对于杨振宁毫无顾忌发表论文,本来就是一副坏脾气的他更加火冒三丈,当场就把杨振宁怼得下不了台。其实这个问题杨振宁也心知肚明,为什么他敢于跨出这一步,泡利却不能呢?这涉及到当代物理学研究范式的一个重大转折。
08
生存还是毁灭,这是一个问题。这句《哈姆雷特》的台词成为家喻户晓的永恒经典,莎士比亚道出了每个人内心深处的纠结——我该如何抉择?当代物理学也很纠结一个问题——撞还是不撞。一位伟大的厚黑学政治家曾经揭晓了所有重大斗争背后的秘密:
观点斗争是假的、方向斗争也是假的,只有权力斗争才是真的。
围绕中国超大对撞机的争论,背后其实还是科学权力之争,超弦与凝聚态物理的角力,其焦点又集中在各自的基本思想。杨振宁成名粒子物理学,但在后来转向凝聚态物理。这场物理学的世界大战从美国打到欧洲胜负1:1,现在中国开辟新的战场,胜负难分。美国那场仗打输了,经费超支并非主要原因,据温伯格透露,来自国际空间站的竞争扼杀了SSC
图片
这个项目经费高达250亿美元,远远超过了SSC的费用,说明SSC被裁还是因为科学价值不够硬。在美国众议院科学、空间与技术委员会议上,美国凝聚态物理大佬菲利普·沃伦·安德森(Philip Warren Anderson)陈述四大科学理由,给了SSC致命一击。其中一条是安德森的核心理由——与日常相关的科学也同样基础。很多人心中的基础科学,要么是研究远小于基本粒子的普朗克尺度,要么是放眼宇宙尺度研究黑洞这样的天体,但是研究雪花的形成、人的思维、经济规律这些日常行为也同样基础。它们听起来没有那么牛逼,但是更加实用。

安德森是1977年的诺贝尔物理学奖得主,开创了凝聚态物理一系。2006年何塞·索勒的一份分析统计比较了论文参考文献与引用数,指出安德森是世界上最有“创造力”的物理学家。

凝聚态物理的前身固体物理学,催生了半导体,是PC、手机、电视机、照相机、互联网、硬盘、处理器、闪存等电子产品的共性,成为IT浪潮的奠基石。

格拉肖称当今全球GDP有2/3来自量子力学的贡献,其实更准确的说法是来自量子力学的分支固体物理学,加入液相后固体物理升级为凝聚态物理,80年代还发现了高温超导材料。

图片
超导体出发,安德森建议粒子物理学家寻找产生粒子质量的机制,启发了后来的希格斯机制。由于杨振宁的努力推动,中国的凝聚态物理欣欣向荣。当年安德森陈述就不无酸意地指出,美国的超导研究已经落后于中国。针对超弦的目标“Theory of Everything”(万有理论),安德森写了一篇杀气腾腾的檄文《More is different》(多则异,量变引发质变)。安德森将万事万物还原成简单的基本规律,并不意味着从这些规律出发重建宇宙的能力,不能依据少数粒子的性质简单外推出多粒子复杂集聚体的行为,相反在复杂体系的每一个层次会呈现全新的性质。研究理解此类新行为,就其基础性而言,与其他研究相比毫不逊色。换言之,我们不能从一些最简单的基本定律去推出各个尺度各个复杂度下的物理,因为物理学在从基本走向非基本,从基本粒子走向多体时,并不是1+1等于2那么简单,而是会产生1之外的某些东西,这些东西属于这些所谓的“外延性学科”的特有属性和现象,并不是由微观的基本定律可以直接推导出来的。

这其实就是当年亚里斯多德反对他的老师柏拉图的现代科学翻版。

图片
吾爱吾师,吾更爱真理。柏拉图相信有个完美的普遍理念,投影出不完美的世界,而亚里斯多德认为普遍是寓于具体事物之中。柏拉图认为这个普遍的理念存在于几何之中,柏拉图学院大门上写着醒目的一行“不懂几何者严禁入内”,这何尝又不是当今以超弦为代表的理论物理的写照。
亚里斯多德出生医学世家,从小就接受了严格的医学训练,这种医学训练培养了亚里斯多德特别重视经验事实的思维方式。所以亚里斯多德认为理论知识不能脱离经验事实,他在《形而上学》一书中就指出:
倘有理论而无经验,认识普遍事理而不知其中所含个别事物,这样的医师常是治不好病的。
柏拉图代表了还原的本体论,亚里斯多德代表了涌现的实体论。这两师徒的缠斗从古希腊哲学一直打到中世纪神学,近现代科学还能时常看到他们刀来剑往。
09
杨振宁本来是柏拉图的传人,1954年他明知理论上有物理的缺陷,还是坚持发表杨-米尔斯规范场论,就是因为他对数学的信心胜过了对物理的怀疑。一来强力弱力很复杂,有可能是应用层面上出了问题,而非错误;二来杨-米尔斯规范场论的对称性非常棒,杨振宁深信这么优美的数学理论不会错,而且当时它和两个已经有稳固实验基础的理论结构有密切关系,它们是同位旋守恒麦克斯韦方程。杨振宁的父亲杨武之是华罗庚尊崇的数学大家,深受家庭熏陶,杨振宁是物理界的数学战斗机,但在物理直觉与实验上稍逊一筹,尤其是实验,同事揶揄,“哪里有杨,哪里就有爆炸”
图片
幸好杨振宁赌对了。后来盖尔曼的“夸克模型”、格罗斯的“渐近自由”、格拉肖、温伯格与萨拉姆的“弱电统一”、霍夫特的“重整化”帮助完善了杨-米尔斯规范场论物理与数学框架,最终成就了粒子物理学标准模型。这颠覆了过去的科学研究范式——在实践中总结理论再予以验证。先有物理框架,再有数学描述。杨振宁是立足于数学的对称性搞出理论,再与物理模型结合得到实验验证。先有数学框架,再有物理描述。
图片
杨振宁警告不要被数学的价值观念所吸引,并因而丧失了自己的物理直觉。他曾把数学和物理之间的关系比喻为一对树叶,它们只在基部有很小的共有部分,而其余大部分是分开的。所以杨振宁敢于跨出那一步,而泡利不敢越雷池半步。世界不过是数学的投影。如果说柏拉图是这个理念的始作俑者,那么爱因斯坦就是将其付诸实践的开山祖师。当年爱因斯坦以一己之力,通过黎曼几何搞出广义相对论,至今还是科学史上的神话。1919年,英国物理学家爱丁顿在日食时观测到太阳引力让星光产生弯曲,这是首次对广义相对论实验验证。有人问爱因斯坦,万一实验结果和理论不符合该怎么办呢?

爱因斯坦如是回答:

那么我将为上帝感到遗憾——我的理论肯定是正确的。
在爱因斯坦心中,数学上这么美的理论,怎么可能错呢?久在河边走哪能不湿鞋。后来爱因斯坦再用这套方法研究统一场论,就没有这么好运了。1947年,美国理论物理学家弗里曼·戴森(Freeman Dyson)来到普林斯顿高等研究院,怀着崇敬的心情找到爱因斯坦的秘书杜卡斯(Helen Dukas),请求爱因斯坦见他。
图片
会见前一天,他开始担心没有什么特别的问题能与伟人讨论。于是,他从杜卡斯小姐那儿拿回爱因斯坦最近的科学论文,都是关于爱因斯坦构造统一场论的。当晚,戴森读了那些文章,觉得都是些垃圾。科学家不是商人,不习惯曲意逢迎,又不好当面指出偶像的问题,第二天戴森不得不找了个理由放了爱因斯坦的鸽子。后来,戴森为量子电动力学(QED)的建立做出了决定性的贡献。QED是一种规范场理论,将麦克斯韦的电磁理论量子化。杨振宁就是受到QED的启发,在量子场理论中引入了规范场,来描述强力与弱力。爱因斯坦晚年与小他年龄一半的哥德尔成了忘年交,奇怪的是,表现出倾慕之情的是年长的巨星,爱因斯坦公开表白自己“去上班不过是为了和哥德尔一起走路回家。”两个人散步的背影曾是普林斯顿的一道风景。

图片
爱因斯坦不喜欢迪士尼的动画片,他讨厌一切中产阶级的东西,有一天哥德尔打电话说想去看一场,爱因斯坦披上大衣出门就去了电影院。他们之间到底为啥这么好,两人在世都守口如瓶,所以至今也无人知晓。从思想上来看,哥德尔在数学领域中提出了不完备性定理,证明了任何一个形式系统,只要包括了简单的初等数论描述,而且是自洽的,它必定包含某些系统内所允许的方法既不能证明真也不能证伪的命题。也就是说,“无矛盾”“完备”是不能同时满足的,既完美又统一是不存在的!哥德尔不完备性定理让希尔伯特的数学大一统梦想变成了令人沮丧的噩梦。

这是不是也适用于物理学上的统一场论呢?或许哥德尔就是这样击中了爱因斯坦的心灵。

在爱因斯坦生命的最后时刻,他要来纸和笔,最后一遍徒劳地验算统一场论。

自然不欣赏我们的神话。
爱因斯坦幽幽地说出这句话,与发表广义相对论豪情壮志判若两人。
10
2012年3月,在“北京弦理论国际会议”上,霍金演讲《哥德尔和M理论》,直面了这个问题。作为统一场论的继承者,超弦的最高形式M理论恐怕也是一场空想。霍金说,他的这一推测基于数学领域的哥德尔不完备性定理,在物理学领域,很可能存在类似的规律,因此建立一个简一的描述宇宙的大统一理论是不太可能的。霍金人在椅中,神游天外,他发现黑洞不黑,黑洞不是饕餮只进不出,仍有信息逃逸出来,由此得出霍金辐射,被认为是多年来理论物理学最重要的进展。
图片
1996年,库姆伦·瓦法(Cumrun Vafa)和安德鲁·斯特罗明格(Andrew Strominger)关于量子黑洞的研究,成功地利用弦理论统计力学,通过计算黑洞的微观量子态,导出了黑洞的贝肯斯坦-霍金(Bekerstein-Hawking)熵公式,这一结果提示弦理论也许能最终解决霍金提出的黑洞信息丢失疑难。自那以后,霍金开始对超弦产生兴趣,不过2012年的演讲证明,或许霍金认同超弦的某些应用,但是不看好其大统一的目的。这并非贬低科学史上那些辉煌的统一成就,还原论思维结合数学工具,是人类从纷繁芜杂的现象总结简洁优美规律的高效手段,但手段并不等于目的,事实上每一次统一之后,就会产生意外的发现,指向新的方向。为统一而统一,超弦不惜为了数学自洽引进超越现实的额外空间维度,反而发散成了几乎无穷大数量的宇宙,成为了吓唬公众的玄学。
图片
物理的真,数学的美。避开繁琐的现象归纳总结,通过发现数学的美来反推物理的真,这是一条捷径,但不要忘了,再美的数学也需要得到验证,最终指向物理的,否则有可能你迷上的是白骨精。如何分辨呢?很简单,数学的美能够产生物理上的预言,可以被实验证实或证伪,就是范冰冰,而不是白骨精。最经典的例子还是爱因斯坦的广义相对论,发表之初就预言了三个物理现象:星光弯曲、黑洞天体、引力波,都一一得到验证。如果爱因斯坦说不出物理预,或者只给出了引力波这种遥遥无期的观测,他在科学上的地位可能就要打一个折扣。反观超弦与超对称理论,就不满足这个条件,有如皇帝的新衣,你们看不到额外维多重宇宙?那是不够聪明。不能预言有效的物理现象,超弦终归是一场数学游戏。

图片
当年LHC上马,好歹还有希格斯粒子保底,CEPC有什么?实验依据不足,目的不明,再加上天量巨资,作为一个有责任的科学家,杨振宁能不反对吗?他给出两个方向建议,进一步研究加速器原理,或专注弦论美妙的几何结构。其实就是在暗示王贻芳与丘成桐,你们俩该干嘛干嘛去,就不要在一起瞎搅和了好吗。前不久,物理学家马塞洛·格莱塞(Marcelo Gleiser)获得了150万美元的2019年邓普顿奖,该奖为奖励“精神进步”而设立,与基础物理突破奖性质差不多。反思过去几十年来痴迷统一与超弦,他在2008年回答著名的“第三文化”的论坛“缘”(www.edge.org)的年度问题说得很实在:

几年前,也许因为我更深刻认识了形成科学思想历史文化过程,事情突然变了。我开始怀疑统一,觉得它不过是实在的一神论在科学的翻版,是在方程里寻找神的存在……二十多年过去了,所有的努力都失败了。粒子加速器没有,冷暗物质探测器也没有,没找到磁单极,没看到质子衰变,过去几十年预言的所有统一的迹象,都没有……
思想决定你的人生,那是哲学上帝决定你的信仰,那是神学方程决定你的逻辑,那是数学事实决定你的认知,才是科学。
11
“性灵出万象,风骨超常伦”。
杨振宁很喜欢用高适《答侯少府》这两句诗来描述狄拉克方程反粒子理论,其极度浓缩性和包罗万象的特点,又或如布雷克的名诗:
一粒砂里有一个世界,一朵花里有一个天堂。把无穷无尽握于手掌,永恒宁非是刹那时光。
杨振宁曾比较狄拉克与海森堡,前者横空出世的狄拉克方程,是量子力学狭义相对论的第一次融合,没有任何渣滓,直达宇宙的奥秘,似乎已把一切都发展到了尽头;后者成名绝技不确定性原理,像是在雾里摸索,显得朦胧、绕弯,没有做干净,还要发展下去。
图片
海森堡坚持只能从一些直接可以被实验观察检验的东西出发,而不是想象一些图像来作为理论的基础。他并非不重视数学,需要的时候顺便发明了矩阵。狄拉克的灵感则来自他对数学美的直觉欣赏,他在1963年曾经明确表示:
“在我看来,一个方程拥有美感,比它符合实验结果更为重要。”
这又何尝不是杨振宁走过的路子,他曾经表示,“从我个人来讲,我是更欣赏狄拉克的风格”,但是他又在后面加了一句,“很多人认为海森堡的贡献比狄拉克还要更高一筹。”《道德经》有言:“大成若缺”。若世界有太多的对称,就不再有意外出现的可能性了,这将是一个稳定但僵化的世界。巴赫的音乐以和谐著称,有数学宗教之美。贝多芬的音乐引入人的情感,打破均衡,通过沉默与爆发展现了音乐力量性的一面。
图片
艺术至美就在于对称性不对称性之间的张力。杨振宁基于数学的对称性推出杨-米尔斯方程,却又与李政道一起发现宇称不守恒,证明世界并非对称获得诺贝尔奖。通观杨振宁的每一个抉择,你不得不佩服,他几乎每一步都踏对了节奏,无论是科学还是人生。坚持自己很难,超越自我更难。杨振宁也有没想到的地方,他反对建超大对撞机,产生了一个溢出效应

当年被他得罪过的中国男人,都黑转粉了。
12
我觉得在我有生之年看不到任何实验支持。
当作者问及超弦前景,中山大学天文与空间科学研究院院长李淼如是说。1984年,第一次超弦革命席卷物理学界,李淼还在中国科技大学研究天体物理,超弦描绘的宏大图景,吸引他投身这股热潮,成为中国最早一批研究超弦的科学家。此后有15年时间,李淼都在海外求学,足迹遍布意大利国际理论物理中心、哥本哈根大学波尔研究所、美国加州大学圣巴巴拉分校、美国布朗大学、芝加哥大学等世界知名高校。在世界顶尖科学氛围的熏陶下,加上自身努力,李淼在超弦理论、量子场论、宇宙学等领域取得了具有国际影响力的研究成果。
图片
1999年,李淼作为中科院“百人计划”的入选者回到国内,成为国内超弦理论研究的领军人物之一。彼时,威滕掀起的第二次超弦革命如火如荼,5个超弦理论被统一成一个M理论。威滕曾经梦想当一名记者,大学主修历史学,辅修语言学,毕业后成为民主党人乔治·麦戈文的幕僚,帮助其竞选总统。麦戈文惜败于尼克松后,威滕失去了社会政治领域的兴趣,重返大学致力学术研究,不过这一次他选择理科方向,专攻物理学数学。弦理论是21世纪的物理学,却偶然地落到了20世纪。

这句超弦最有名的公关slogen就出自威滕之手。

图片
当威滕在1995年找到统一5个超弦理论的方法时,因为理论模糊粗糙,还不够精准完备,他的公关天赋再一次被激发,M理论的命名堪称科学史上一次绝妙的标题党行为。威滕解释,这个M可以理解为魔力(magic)、神秘(mystery)、母亲(mother),也可理解成假想的物质基本结构膜(membrane),超弦创始人之一施瓦茨受到启发,还将矩阵(matrix)加到M的解释中。引入中国后,M理论甚至与汉字(mi)、(mi)产生了联系。如今距离第二次超弦革命已有24年,超过历史上任何一次弦论突破需要的时间,一直没有重大进展,第三次超弦革命遥遥无期。在超弦界颇有建树,并出版了一本《超弦史话》的李淼,也于2015年受邀南下,担任天文与空间科学研究院院长,领衔探测引力波的“天琴计划”
图片
引力波是爱因斯坦广义相对论预言的物理现象,其在2016年得到观测证实,李淼此举,意味着他回到了传统物理理论研究。种种迹象反映一个令人尴尬的事实:M理论的M,有可能是物理学史上最大的错误(mistake),最令人痛心的失落(miss),最长久的迷梦(mi、meng)。超弦的,也快成了玄学的玄。《三体》小说中,外星人发射智子到地球,锁死了LHC的发现,以致人类不能发现更加底层的粒子结构,导致现代科学踯躅不前。而李淼对醋醋表示,实验没有问题,是超对称理论错了。

那么这是否表明,李淼研究了30余年的超弦理论,已经实质上破产

李淼对此保持了长久的沉默。

欲将心事付瑶琴。知音少,弦断有谁听。