我国学者可重整量子引力的引力波验证(连载1)

我国学者可重整量子引力的引力波验证(连载1)

时间:2019-11-28    点击:56 次    来源:湖北大学    作者:NES量子与宇宙   – 小 + 大

摘要:本文通过引力波实验结果,提出对广义相对论中引力扰动的作为力和作为几何度量的两种功能进行验证和确定的方案。同时,将其与双变量度量量子引力,进行了体制上的比较。

注:本文说明邵氏团队开创性的工作,已经取得巨大突破。采用圈量子理论将引力的量子化、重整化成功,将量子引力与宏观引力实现统一。而且,所发现的空间张量与引力扰动量相等在宏观上就是宇宙膨胀量与引力的相等。这个理论值得用实验检验验证。特此推荐。李小坚

邵丹 Longkai Wu 李小坚 邵常贵 黄保国

摘要:本文通过引力波实验结果,提出对广义相对论中引力扰动的作为力和作为几何度量的两种功能进行验证和确定的方案。同时,将其与双变量度量量子引力,进行了体制上的比较。

关键词:广义相对论度规;双变量量子引力度量;引力波验证

中图分类号:0413.3

1、概述

Ashtekar,Rovelli,Smolin等人提出的圈量子引力[1.2],做出了空间时间的量子化,是目前最为系统的一种空时量子化理论,双变量度量量子引力[3.4],利用圈量子引力的基本思想[3],采取空时和引力分离表述的方法,发展出了一中引力相互作用可重整的量子引力[4]。即引力相互作用过程中出现的两种发散,全部可以被消去(目前国际上只求得其中一种,且无法消去。见[2])。

广义相对论的四种验证均验证的是,其中含有的引力扰动hμv(x)的作为力(或能量)的测地线行为。而对它是否有对空时自身几何的影响能力,目前尚无确切验证。同时,广义相对论已被认为,是不能重整化的。这样一样,在广义相对论与双变量度量量子引力之间,将存在观念上和方法上的不同。而这些不同能得到验证,将在引力理论发展上具有重要意义

本文提出,利用对引力波观测结果的客观分析,将会在体制上别广义相对论、双变量度量量子引力、引力波有关实验,三者间的可能关系,以至各自的优劣甚至对错。

2、广义相对论与双变量度量量子引力的度量

广义相对论的度规gμv (x)表式为:

gμv (x) =ημv(x)+ hμv(x) (1)

式中,ημv为平坦闵柯夫斯基空时度规,hμv(x)为引力扰动。双变量度量量子引力的组合度量gμv (x),在与表观理论广义相对论比较下,可写为:

gμv (x) =ημv+ ηEμv(x)+ hμv(x) (2)

式中,ηEμv(x)为这一量子引力在微观空时和引力量子化的规范机制中,由于引力圈线占有空间“体积”,而析合出的度量组份,用于消去引力相互作用中的发散[4]。且有当量等式:

ηEμv(x)= hμv(x) (3)

这里指出,(2)与(1)相比较,多出的ηEμv(x)的来源是自然存在的。这是当考虑微观空时与引力形成外部规范体系时,引力扰动圈线hμv(x)通过质地ημv的行为,有如绣线穿过织物质地一样,要占有相同(即(3)成立)的体积一样。

但这一图景的意义,却使广义相对论成为了真正意义上的外部引力扰动规范理论。它打破了广义相对论不能区别绣线和质地体制上的局限,而只能将二者混为一体的做法。即在(2)中使二者分离,且均作为基本变量而出现,而且二者相等。

这里指出,(2)中出现的ηEμv(x)除了可使引力重整化外,也对空时自身几何与引力扰动间的关系,提供验证机会。并且用引力波的实验就可以验证。这显然是引力与空时理论上的一个有重要意义的切入点。

这里指出,广义相对论只是一种宏观唯象理论,当向微观尺度深入发展时,它的经典体制将不再适应。双变量量子引力中的ηEμv(x),是该理论在微观存在、并用以消去发散的空时扰动。它的存在,使双变量理论的微观实现了引力的重整化。而当重整化完成后,ηEμv(x)的功能已经完成,它在宏观广义相对论的体系中并不存在。即广义相对论只是作为双变量理论完成了重整化之后的结果,而出现。ηEμv(x)的存在,不仅使引力得到了重整化,也将这一理论引向微观。同时,也指明了广义相对论的宏观唯象地位。

而(3)式的成立,是由于圈量子引力的圈线法,把引力圈线与空时圈线分离表述的自然结果。即引力圈线(hμv(x))通过空时时,将占有体积折合成的度量份额(ηEμv(x))所致。

3、广义相对论与双变量度量量子引力的引力波验证

双变量度量量子引力认为,引力与空时是物理学两种完全不同的概念,不能相互混同或融合(只能等效、但不等同)。而目前广义相对论验证的只是hμv(x)与力有关的属性。hμv(x)在求解时来源于爱因斯坦方程,得到的具体解(即hμv(x)的具体表式),也是将hμv(x)的组份作为引力势的由力到引力场的提升。物理学目前尚未有发现涉及到hμv(x)可以具有力也可以具有改变空时自身几何的双重作用(这是需要实验确认的)。而这也正是双变量度量量子引力与广义相对论的区别所在。即,前者认为hμv(x)只具有力的属性,它自身不能改变空时自身的度量。空时自身度量的改变是通过ηEμv(x)实施的。虽然一定条件下,得到的表观结果看似一样,但物理机制和观念是根本不同的(这也是广义相对论被看成表观理论的原因)。而这种验证是一直无法进行的,当前的引力波实验,正式接触到了这一问题。

另外,双变量度量量子引力,还得到如下广义相对论不曾有的结果:ηEμv(x)可以对空时度量有影响,但也可以无有影响。这最终要由物理实验证明,而最好的验证也是引力波实验观测。即,引力波实验对两种可能情况,起着至关重大的抉择作用。

4、引力波观测实验的抉择

ηEμv(x)对空时几何自身(即度量组份)有否影响的抉择结果如下:

若在排除干涉条件下满载通过的引力波长度上的测量,得到的长度改变与波测长度无关;则说明ηEμv(x)(仍至hμv(x) )并不影响空时自身的度量。若测得的结果与被测长度成正相关;则说明ηEμv(x)将影响空时自身的度量。前者表明,广义相对论体制上存在根本问题(如弯曲空时的存在问题),它实际上只是一种引力的理论。后者表明,是ηEμv(x)的作用支持了引力的重整化。

如上两种状况是引力波测量(可整理出)的必然结果,可作为双变量理论与广义相对论观念与方法上的一种检测。

但若测不到二种方法中的一种,这也有重要作用。即这表明,或测量手段存在问题,或这种引力波实验测量的根本就不是引力波

5、结论

由于广义相对论的四大验证,并未有真正涉及到引力扰动对空时几何本身的深层作用[5]。它对物质粒子在空时中的测地线运动,仍可认为是其中引力作用造成的结果,并非是空时自身的弯曲[6]。这两种观点在广义相对论研究中,一直存在。本文指出,对引力波观测结果的如上分析,可以得到判定性的有抉择作用的结果。这将对确认广义相对论的体制和区隔广义相对论并深入发展引力理论,有重要意义。

即,对地域上和天区上的引力波实验,将只能存在这三种结果。而最后一种结果,将是对引力波实验真实与否的一种客观判据。也将成为物理学的关注对象。