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ABSTRACT

An understanding of the long-term evolution of self-gravitating discs ranks among the classic
outstanding problems of astrophysics. In this work, we show that the secular inclination dy-
namics of a geometrically thin quasi-Keplerian disc, with a surface density profile that scales as
the inverse square-root of the orbital radius, are described by the time-dependent Schrodinger
equation. Within the context of this formalism, nodal bending waves correspond to the eigen-
modes of a quasi-particle’s wavefunction, confined in an infinite square well with boundaries
given by the radial extent of the disc. We further show that external secular perturbations
upon self-gravitating discs exhibit a mathematical similarity to quantum scattering theory.
Employing this framework, we derive an analytic criterion for the gravitational rigidity of a
nearly-Keplerian disc under external perturbations. Applications of the theory to circumstellar

discs and Galactic nuclei are discussed.
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1 INTRODUCTION

Astrophysical discs are among the most ubiquitous objects in the
known universe. Generically understood to be a consequence of
energy dissipation within gravitationally bound rotating systems,
these structures span a staggering assortment of scales, ranging
from galaxies to protoplanetary nebulae and circumplanetary rings
(Goldreich & Tremaine 1982). Accordingly, characterizing the
long-term evolution of self-gravitating discs constitutes one of the
key challenges of dynamical astronomy.

Owing to their inherent diversity, astrophysical discs arise in
nature with variable compositions, and can occupy rather distinct
physical regimes. For example, active galactic nuclei and protoplan-
etary discs are predominantly composed of hydrogen and helium
gas, and are representative of fluid discs. As such, their evolution is
governed by gravitational as well as (magneto-)hydrodynamic ef-
fects. Conversely, planetesimal/debris discs, as well as discs of stars
that orbit supermassive black holes in the centres of galaxies (i.e.
so-called particle discs), are subject to essentially pure gravitational
dynamics' (Latter et al. 2017).

Observed instances of astrophysical discs often encircle central
objects that are much more massive than the discs themselves.
The resulting dominance of the central body’s gravitational poten-
tial leads to quasi-Keplerian particle motion that resembles plan-
etary orbits on short (orbital) time-scales, but can exhibit non-
trivial behaviour over much longer periods of time, due to self-
gravity (Tremaine 2001; Touma & Tremaine 2014). Describing the
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!Intriguingly, owing to their mildly collisional nature, Saturn’s rings reside
in between the ideal fluid and particle parameter regimes.

long-term exchange of angular momentum within such systems is
the primary aim of this paper.

The specific goals of our analysis are essentially two-fold. Our
first aim is to formulate a tangible theory for the secular incli-
nation evolution of dynamically cold self-gravitating discs. Our
second goal is to derive a dimensionless number, somewhat akin
to Toomre’s Q, that characterizes the propensity of discs to warp
under external perturbations. In other words, we seek to obtain an
analytical criterion for the gravitational rigidity of astrophysical
discs.

Quantifying the self-gravitational evolution of discs and their
global response to external perturbations is essential to interpreting
modern observations, as well as to the development of planet for-
mation theory. In particular, the dynamical origins of the warped
stellar disc at the centre of our Galaxy have been attributed to a
complex interplay between self-gravitational effects and torques
from surrounding stellar clusters (Kocsis & Tremaine 2011). Like-
wise, large-scale warps and spiral morphology of young circum-
stellar discs” (see e.g. Golimowski et al. 2006; Backman et al. 2009
and the references therein) are routinely ascribed to interactions
between the discs themselves and perturbing stellar or planetary
companions (Nesvold, Naoz & Vican 2016; Nesvold et al. 2017).
Even the seemingly unrelated question of the provenance of spin-
orbit misalignments in exo-planetary systems may be deeply rooted
in the process of gravitational torquing of protoplanetary nebulae
by bound or passing stars (Bate et al. 2010; Spalding & Batygin
2014).

2 Well-known examples of extrasolar debris discs are found around Vega,
Fomalhaut, g Pictoris, and € Eridani.
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Importantly, all of these phenomena arise on the so-called secu-
lar time-scale — one that greatly exceeds the characteristic orbital
period, but is significantly shorter than the physical lifetime of the
system (e.g. ~10° yr). By operating in between the aforementioned
temporal extrema, the dynamical mechanisms at play are poorly
represented by either an explicit (N-body) description of orbital
motion, or a diffusive model of angular momentum transfer within
discs (Pringle 1981). As a result, secular behaviour of continuous
self-gravitating systems remains imperfectly understood, and war-
rants the development of a simple theoretical model.

At present, there exist three primary means of analysing the dy-
namics of self-gravitating discs. The most straight-forward route
is to employ direct N-body simulations. In spite of remarkable ad-
vances in computation that have transpired within the last decade
(Gaburov et al. 2009; Moore & Quillen 2011), this method remains
too computationally expensive and specialized for most problems
of interest. A second, more compact technique utilizes the collision-
less Boltzmann equation, which, instead of granting N individual
trajectories as the solution, yields the evolution of the system’s
distribution function in phase-space (Binney & Tremaine 1987;
Sridhar & Touma 2017). A third approach relies on Gauss’s averag-
ing method of celestial mechanics, to replace the individual bodies
with a series of massive wires that interact gravitationally among
one another on time-scales much longer than the orbital period
(Touma et al. 2009; Batygin 2012).

In this work, we focus exclusively on the third, mean-field model
of self-gravitating discs. Specifically, working within the context
of the Lagrange—Laplace secular perturbation theory, we demon-
strate that the N-ring description of self-gravitating discs can be
reduced to an evolution governed by Schrodinger’s equation. Cor-
respondingly, this simplified framework allows for the computation
of gravitational rigidity of astrophysical discs, and yields new in-
sight into their long-term dynamical evolution.

The paper is structured as follows. In Section 2, we obtain
Schrodinger’s equation as a continuum limit of Hamilton’s equa-
tions. In Section 3, we apply this calculation to the inclination
dynamics of nearly circular self-gravitating discs, and derive the
corresponding eigenfunctions and eigenfrequencies. Importantly,
we note that while the eigenfunctions of the disc can be approx-
imately obtained by only considering nearest-neighbour interac-
tions (Section 3.2.3), the computation of the system’s eigenfre-
quencies requires accounting for collective effects within the disc
(Section 3.2.5). In Section 4, we extend this formalism to account
for external perturbations, and deduce an analytic criterion for grav-
itational rigidity of perturbed systems. We summarize and discuss
our results in Section 5.

2 SCHRODINGER’S EQUATION FROM
HAMILTON’S EQUATIONS

Prior to considering self-gravitating discs explicitly, let us deleni-
ate a general framework that the calculations will follow. Recall
that quantum and classical mechanics are routinely thought to be
governed by Schrodinger’s and Hamilton’s equations, respectively.
Being macroscopic in nature, the latter is generally considered to
be a limiting case of the former, where the action quantum A — 0.
This notion is strongly related to Ehrenfest’s theorem, and is often
referred to as the correspondence principle (see e.g. Sakurai 1985).
In this section, we demonstrate the converse to also be true in a
specific case. That is, for a particular Hamiltonian, Schrodinger’s
equation naturally arises as a limiting case of Hamilton’s equations.
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Figure 1. An infinite chain of harmonically coupled oscillators. The posi-
tions of the objects are fixed on the x-axis, such that the distance between
neighbouring sites is éx. The dynamical state of each oscillator is described
by a pair of action-angle coordinates, (P, ¢).

Consider an infinite sequence of coupled objects lying on the
x-axis, whose individual dynamical state is described by a pair of
action-angle variables ... (®;_ 1, ¢;_ 1), (®j, ), (®j1, Pj+1)....
Let the spacing between the objects be equidistant, and denote it §x
(Fig. 1). Finally, let the purely classical Hamiltonian describing the
evolution of object j be

H=2c¢ Q)j +2cy 4/ cbj ‘I)_/‘Jr] COS(d)]‘ — ¢_/+1)
+20/Q;P; i cos(¢p; — Pj-1), (D

where c¢; and ¢, are quantities that can depend on x and 7. Note
that in the above expression, only interactions between the nearest
neighbours are considered.

Next, we define canonical Cartesian analogues (£, ¢) to the
action-angle variables (P, ¢):

£ =+2®dcos(p) ¢ =~2Dsin(e), ©)

and organize them into a single complex coordinate:

_Etug
V2

where 1 = /—1. The Hamiltonian then reads:

v

= VD exp(i ¢), 3

H=2cW,¥ +2¢ (wj MRV

W), )

where W is a complex conjugate to W.
In terms of complex variables, Hamilton’s equations take on a
rather succinct form (Strocchi 1966):

dw; oH
Tt/=l a\IJT =l<26‘1 \l/j+6‘2 (‘1’j+1+‘~1"j,1)>‘ (5)
If we envision ¥; _ |, ¥;, ¥, |, ... to be a discrete representation

of a continuous, complex field ¥, we may write down the central
difference approximation for its second derivative as follows:
W W =20 4,

dx2 (8x)*

Q)

We note that a similar approximation is routinely made in the elastic
continuum representation of harmonic crystals (Animalu 1977), and
corresponds to the limit where the wave numbers of interest greatly
exceed the spacing between atomic sites (i.e. 27t/k > 6x).

Plugging in equation (6) into equation (5) and multiplying both
sides by —h/1, we obtain:

oY, 0’y
th—2,=—h <2(c1+c2)\1/,~+cz(sx)2 5 2’). ()
X

ot

Note that here, we have taken advantage of the fact that the dynam-
ical objects are fixed in their x-coordinate to set d\W/dt = oW /0t.
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Adopting the following expressions for the interaction constants:

Vix,t) h h
_ o
2 2uGxyY T 2p6x)>

€= ®)
and taking the limit as §x — 0 (which renders the relationship
in equation 6 exact), we obtain the time-dependent Schrodinger’s
equation:

h ————— 4+ V(x,t
1 Py + V(x, 1)

oW, 1) | h* @’ Ve 0 ©
' a 21 0x2 S

This derivation is trivially generalizable to three spatial dimen-
sions. Moreover, a simple modification of the same procedure natu-
rally leads to the non-linear variant of Schrodinger’s equation. That
is, addition of a non-linear action term to equation (1), such that

H/:H+§¢§,=H+§(\y, Wy (10)
yields
zhw = —h—za—z—i—V(x,t) W(x,t)
ot 24 0x2
+i (W (x, D)]>U(x, 1) (11

It is worth noting that a Hamiltonian of the form (10) is often
referred to as the ‘second fundamental model of resonance,” and
possesses a phase-space topology similar to that of a harmonic
oscillator or a pendulum, depending on the assumed values of the
constants (Henrard & Lemaitre 1983).

This work is by no means the first to derive Schrodinger’s equa-
tion from purely classical principles. For example, Nelson (1966)
showed that Schrodinger’s equation can be obtained as a description
of a stochastic system, where particles are subjected to Brownian
motion with a diffusion coefficient #/2m, in addition to Newton’s
laws of motion. Extension of this formalism to an effective field
theory has been considered by Guerra (1981), and has led to the
so-called stochastic interpretation of quantum mechanics.

In contrast with these works, here we did not draw on stochastic
fluctuations to augment classical mechanics. At the same time, we
emphasize that even though the above derivation is self-consistent,
it is not general, and only applies to a particular Hamiltonian that
describes a continuous chain of forced harmonic oscillators with
specific interaction coefficients. Incidentally, the governing equa-
tions of Largrange—Laplace secular theory of celestial mechanics
can be cast into this form.

3 SECULAR EVOLUTION OF
SELF-GRAVITATING DISCS

Having outlined the general course of action in the previous section,
we now proceed to show how the Schrodinger equation can be
used to understand the long-term evolution of self-gravitating discs.
However, prior to computing the dynamical evolution itself, it is
necessary to define a number of basic properties of our model.

3.1 Disc profile

Consider a disc of material, comprised of a large number of point
masses in orbit around a single central body of mass M. Envision
that the gravitational potential of the central body dominates, such
that the trajectories of the individual bodies follow Kepler’s third

law:

L (12)
&

where 7 is the mean motion, and a is the semimajor axis. Further,
assume that the orbital eccentricities as well as mutual inclinations
of neighbouring orbits are not exceedingly large, meaning that the
inherent velocity dispersion of a population of objects occupying
the same semimajor axis range is modest compared to the Keplerian
velocity. Correspondingly, we define the aspect ratio of the disc, 8,
as an intrinsic small parameter of the problem, and take it to be
constant:

h
B = E =const. < 1, (13)

where & is the characteristic scale height. Crucially, the value of
B sets the gravitational softening length of the disc® (Adams et al.
1989; Touma 2002).

Let us now replace this collection of secondary bodies with a
series of N massive ‘streams,” thus turning the aggregate of orbit-
ing particles into a disc comprised of nested elliptical wires, with
normalized thickness § (Fig. 2). Importantly, we assume that the
wires do not cross and that the epicyclic motion of constituent par-
ticles (i.e. distribution of eccentricities at a given semimajor axis)
is fully encapsulated by softening parameter (Binney & Tremaine
1987). The spacing of the wires is taken to be geometric, such that
the semimajor axis ratio of neighbouring orbits, «, is constant, and
roughly corresponds to a single softening length:
aj-1 _ 4 1

—~1 (14)

(07 = =
a;  aj 1+p

In light of this definition, it is useful to scale the semimajor axis by
the disc’s inner truncation radius, a;,, and introduce a dimensionless
logarithmic radial coordinate

o =log (i) £Elog(“0ut) 7 15)
Ain Ain

where a,,, denotes the outer boundary of the disc. In terms of this
quantity, the wires are spaced equidistantly, and the disc bound-
aries are given by p € [0, £]. To this end, we note that any realistic
system will have £ on the order of a few, rarely exceeding 10. Co-
incidentally, for a typical protoplanetary nebula (e.g. a;, ~ 0.05 au
and aoy ~ 50au), £ ~ 2.

Qualitatively speaking, the process of ‘smearing out’ individual
bodies into massive rings, whose line densities are inversely pro-
portional to orbital velocity, is equivalent to canonically averaging
over the rapidly varying orbital angles (i.e. mean longitudes). This
procedure yields orbital semimajor axes, a, that are frozen in time,
because the action conjugate to mean longitude is proportional to
J/a (Morbidelli 2002). In turn, this conservation implies that the
two-body (Keplerian) energy of each object is preserved, and the
wires only exchange angular momentum. Physically, this process
leads to slow precession of the apsidal and nodal lines of the orbits
as well as variations in eccentricities and inclinations.

A conventional parametrization of density variations in astro-
physical discs assumes that the surface density, X, scales as some
negative power of the orbital radius (Armitage 2010). Here, we

3 Intuitively, softening the gravitational potential of a point-mass by a length
h can be thought of as spreading the mass of the object over a Plummer sphere
of radius h.
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Figure 2. Geometric setup of our model. A quasi-Keplerian disc of N >> 1 particles is modelled as a sequence of geometrically spaced massive wires. The
gravitational potential of each wire is softened by the aspect ratio of the disc, accounting for the inherent velocity dispersion of the constituent particles. A
surface density profile that scales inversely with the square root of the semimajor axis is assumed.

follow this standard prescription and adopt an inverse square root
surface density profile of the disc:

172
T=13 (”’“) : (16)
a

where ¥ is the surface density at a reference semimajor axis, dg.
We note that while this profile is somewhat shallower than, say,
a classical Mestel (1963) disc which takes ¥ o 1/a, it is rou-
tinely employed in numerical studies of protoplanetary discs (e.g.
Bitsch & Kley 2011; Lambrechts & Lega 2017). Strictly speaking,
this approximation is not necessary. However, here we choose to
adopt expression (16) for illustrative purposes, as it will simplify
some of the calculations down the line.

With the above definitions in place, we obtain the following
expression for the mass of an individual wire (of index j):

a(1+8/2)
:74/ Sadadp ~27p Toy/aga} + OB,  (17)

a(1-B/2)

where ¢ denotes the azimuthal coordinate. Correspondingly, as-
suming that a;, < dou, the total disc mass is given by

Mgisc = %/ Yadady =~ E \/aoagm. (18)
Qin

The approximations employed above are only sensible if the
dynamical evolution that ensues on the orbital time-scale does not
deviate significantly from purely Keplerian motion. Quantitatively,
this statement corresponds to the requirement of the gravitational
stability of the system (Safronov 1960; Toomre 1964):

hn?
> 1. 19
TG ~ (19)

In practical terms, this restriction translates to an upper limit on

Q:

Misc:

M

Misc S ,3 7’ (20)

and yields a connection between the inherent velocity dispersion of
constituent matter and surface density of the disc. With the prelim-
inary specifications of the model now in place, we now continue on
to compute the dynamical evolution.

3.2 Inclination dynamics

Lagrange-Laplace secular theory constitutes one of the earliest,
and best-known results of perturbation theory in celestial mechan-
ics. Within the framework of this model, the phase-averaged gravita-
tional potential of the interacting bodies (i.e. the negative disturbing
function) is expanded as a Fourier series in the orbital angles and
as a power-series in eccentricities and inclinations (Ellis & Murray
2000). Truncating the expansion at second order in both quantities
yields secular vibrations of inclinations that are decoupled from
the oscillations of eccentricities.* Taking advantage of this discon-
nect between the degrees of freedom, here we treat the inclination
dynamics, simply assuming that the eccentricities are small.

3.2.1 Governing equation

Consider the inclination dynamics of a wire (labeled by index j # 1,
N) embedded within a radially extended disc. As a first approxima-
tion, let us restrict the range of interactions of wire j to its nearest
neighbours, j + 1 and j — 1. This approximation has the obvious
shortcoming of reduced coupling within the disc, and we will re-
visit (and fix) this limitation later in the manuscript. The relevant
(scaled) disturbing function® that governs the exchange of angular

4 Coupling terms arise at fourth order in the perturbation series, and are
responsible for secular chaos within the Solar system (Laskar 1994; Batygin
et al. 2015).

5 The unscaled disturbing function is a measure of energy, like the Hamilto-
nian. Reduced by a characteristic angular momentum m~/G M a, the scaled
disturbing function becomes a measure of frequency (and has units of inverse
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momentum is (Murray & Dermott 1999):

.. .
R/' = EBJ/ lj2'+Bjj—l lj lj_]COS(Q/’ _Qj—l)

+Bjjs11jij+1c08(82; — j11), @n

where i is orbital inclination, €2 is the longitude of ascending node,
and B’s are interaction coefficients that depend only on the semi-
major axis ratios and masses.

Although Keplerian elements i and €2 do not constitute a set of
canonically conjugated variables, the quantities

p=1sin(R) g =1i cos(R) 22)

do, where p is interpreted as the coordinate and ¢ is the momentum
(with R; acting as the Hamiltonian). Note that physically, p and
q represent a measure of the angular momentum deficit of wire j
in the Z-direction. Collecting these variables into a single complex
coordinate akin to equation (3):

=1 :};p - % exp(i ), 23)

we rewrite equation (21) as follows:

Rj = Bjjn;jn; + Bjj-i (’7/‘ niy 0 ’l}‘-)

+ Bjji (771 Mip1 i1 '77)- 24

This expression is clearly reminiscent of Hamiltonian (4). How-
ever, in order to draw further analogy between equations (24) and
(4), we must evaluate the relationship between the coefficients Bj;,
Bjj_ 1, and Bj; | ;. Under the assumption that m; <« M, these quan-
tities are expressed as follows (Murray & Dermott 1999):

nimi_, -
Bjj1 = j’ 1(4 aby)la}
njmj 7 (1)
Bjj1 = ZJ ]{,1 o’ by e}
Bjj = *(B//—l + B//+1)’ 25)

where Egl/)z{a} is the Laplace coefficient of the first kind. Recalling
from equation (14) that « ~ 1 — B, expressions (25) imply Bj; _;
~ Bjj 1 1. In particular, upon defining the quantity

nim; o - mi_ m; 1
B="Y ’]219;]/)2{“}[ j 1+ j+1

a4 M m; m; 1+8
_nimj e 24284
= 2w e S | (26)
we have
1Bt~ Bl = 1By~ Bl ~ 5 4 o) <1
Bj; = -2B. 27

At this point, the advantage of choosing the specific form of the
surface density profile (16) becomes evident. Since m ; Va? and
nj ol /x/c?, the two dependencies cancel, rendering 3 constant
throughout the disc. Thus, to an excellent approximation,
dn; z OR;

dt on;

“13(77,/—1 —2T)j+nj+1>- (28)

time). For the remainder of the paper, we will refer to the scaled disturbing
function as simply the disturbing function.
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We note that under a different choice for the radial dependence of
the surface density profile, the quantity B would become an explicit
function of the semimajor axis.

Because the disc annuli are spaced geometrically in a, they are
equidistant in p (equation 15), with

8p = pjr1 —pj = p; — pj—1 =log(l + B). (29)

Hence, employing the finite-difference approximation (equation 6)
and recalling that the semimajor axes of the wires are secularly
invariant, the continuum limit of equation (28) takes the form:

on %y

2
S =18 (1og(1 n ﬂ)) - 30)
Due to the proximity of the neighbouring wires to each other, it is
sensible to evaluate equation (26) in the limit where « — 1. How-
ever, Laplace coefficients are notoriously singular at « = 1 (this
is simply a re-statement of the fact that the gravitational potential
becomes infinite at null separations). This mathematical inconve-
nience is easily circumvented by accounting for the inherent veloc-
ity dispersion of particles within the disc and softening the Laplace
coefficient by the disc aspect ratio (Touma 2002; Hahn 2003):

B (a) = % /” cos(j ¥)
0

3
(1 —2acos(y) + a? + ;32)

These softened Laplace coefficients are well-behaved in the o —

1 limit, and the quantity b;lfz can now be expressed in terms of

standard elliptic integrals. For the time being, it suffices to evaluate

this function at @ = 1/(1 4 B) to obtain:

dy. 31)

- 1
ab o}~ — + OB™). 32
3t} 7z p2 B7) (32
Substituting this result back into equation (26), multiplying both
sides by 1w;, while expanding to leading order in 8, and noting
that log (1 + B) =~ B, we obtain the potential-free Schrodinger’s
equation of inclination dynamics within the disc

® — (33)
0

nom B Xov/GMay
M oM

Thus, the mathematical description of secular angular momentum
exchange within self-gravitating discs parallels that of a quantum
particle confined to an infinite square potential well, with boundaries
that extend from p = 0to p = L. Note further that in this formalism,
the fundamental frequency w; — a quantity related to the angular
momentum budget of the disc — takes the place of A°.

From intuitive grounds, one may speculate that because we have
limited ourselves to only considering near-neighbour interactions
in the treatment outlined above, w; must substantially underestimate
the true wave propagation frequency within the disc. This is indeed
the case, and the limitations arising from this approximation will be
addressed quantitatively in Section 3.2.5. In the meantime, however,
it is advantageous to temporarily ignore this problem and examine
the character of the normal modes dictated by the above equation.

(34)

6 We remind the reader that assuming a functional form for the surface
density profile other than that given by equation (16) would render w; a
function of a.



3.2.2 Boundary conditions

The specific character of the solution to equation (33) is determined
by the imposed boundary conditions. In the well-known problem
of a quantum-mechanical infinite square well, it is appropriate to
employ the Dirichlet boundary conditions, = 0 at p = 0 and
p = L, since the wavefunction must vanish at the boundaries. On
the contrary, for the problem at hand, there is no reason to require
the orbital inclination to approach a particular value at the margins
of the disc, and instead the boundary conditions must be deduced
from the behaviour of the discrete system at the disc’s inner and
outer edges.

Let us consider the outer edge first. The disturbing function for
the wire indexed by j = N is

Ry =—-Bnyny+B (mv Ny_1 + v—1 n}‘v>, (35)

where we have recycled the same approximations from the preced-
ing sub-section. The resulting equation of motion has the form:
d)’] N R N

ar =1 s =1 B(’?N - UN—l)- (36)

The RHS of this expression is a finite difference approximation for
the first derivative of n with respect to p. Correspondingly, recalling
that B (8p) ~ w; /B, we obtain the boundary condition at p = L:

on B on

S __r£- 37
"0 T w0 37

An identical procedure can be carried out for the inner bound-

ary by change of indexes. Specifically, the appropriate disturbing
function is

Ry =By +8 (nns +mo). (38)

However, because the order of the wires is now reversed, the deriva-
tive appears with the opposite sign. The boundary condition at p =0
is thus

o1 _ B

= ——. 39
ap w; ot ( )

With these specifications in place, we can now proceed to write
down the solution to the governing equation (33).

3.2.3 Solution

Let us begin by noting that the potential-free Schrodinger equa-
tion (33) itself is a diffusion equation in imaginary time. Physically,
this means that the ‘diffusion’ process must conserve the phase-
space volume of the underlying distribution function (i.e. the time
evolution must be unitary; Stone 2000). This is perfectly sensible
since in Section (2) we derived Schrodinger’s equation from Hamil-
ton’s equations, which are themselves rooted in Liouville’s theorem.
Accordingly, rather than describing decay as its solution, equation
(33) must instead be satisfied by standing waves —i.e. normal modes
of a disc.

Let ¢ denote the index of a mode (characterized by frequency
wy). By separation of variables

Ne = co exp(—t wet) Ly, (40)

where ¢, is a constant, we obtain the familiar harmonic oscillator
equation
9’7,

wkIe_Fwiaipz =0, (41)
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Figure 3. Normal modes of a razor-thin (8 — 0) disc. Six low-frequency
modes are shown, and are labeled by the appropriate index £ = 0, 1, ...5.
Stationary modes of a geometrically thin disc with § = 0.01 appear nearly
indistinguishable from those depicted in this figure.

subject to the boundary conditions

o w; 9p w;
Note that for long-wavelength modes, where w, does not exceed
the fundamental frequency w; by a large margin, expressions (42)
are well approximated by the rudimentary Neumann boundary con-
ditions 0Z,/dp = 0 at p = 0, L, characteristic of a string with free

ends.
The solution to equation (41) is

T, = cos <\/wf,0> —ﬂ,/ﬂSin <\/a7/0> (43)
w; w; w;

with the quantization of w,/w; stemming from the condition

Bwe 1] . w L\ o [0
2601'_2,3] sm( wi£>_ s cos< wiﬁ). 44)

Although this expression does not admit a simple solution, in the
— 0 limit of a razor-thin disc, it simplifies to sin (/& /w; £) =0,
which is trivially solvable. Adopting the razor-thin limit as a
leading-order approximation, it is straightforward to derive a cor-
rection to the quantization condition:

2
e 4B 2
o _(£> (1 4£>+O(ﬁ ). (45)

Fig. 3 depicts stationary states Z, with £ =0, 1, ..., 5.
Collecting the above results, the normal inclination modes of a
self-gravitating disc are expressed as follows:

- ex)’ 1—4P) o
Ne = Cp €Xp | — 1 f — Z w;
/ B . (Lmp B
X 1—42 Sln(ﬂ 1—4£>:|. (46)

42)

p=0 p=L
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5076 K. Batygin

Figure 4. Six low-frequency inclination normal modes of a razor-thin disc, rendered in physical space. Note that owing to the definition of the logarithmic
coordinate p, large-scale variations associated with higher mode indexes are concentrated towards small orbital radii. Here, mode amplitudes of ¢, = 7t/10 are

assumed throughout.

We note that this solution corresponds to a special case of constant
w;, which is in turn facilitated by a particular choice of the surface
density profile (equation 16). Employing the 8 — 0 approximation
once again, we obtain the simple expression:

2
Ne & ¢y exp {—z (T) w; t} cos (T) A7

Within the framework of this solution, the coefficients ¢, are
determined from Fourier decomposition of the initial conditions.
Upon determination of these quantities, superposition of the eigen-
states (47) fully describes the secular evolution of a self-gravitating
disc. Physically, these eigenstates describe stationary nodal bend-
ing waves, with regression frequencies given by w,. A number of
low-frequency modes are shown in Fig. 4, as they appear in physical
space. Note that unlike the quantum infinite square well, where the
ground state of the wavefunction corresponds to £ = 1, the lowest
index allowed within the context of our formalism is £ = 0, which
describes a uniformly inclined, static disc.

3.2.4 Beyond nearest neighbours

The preceding analysis was carried out entirely within the limited
framework of the nearest-neighbour interactions. Let us now quan-
tify the validity of this assumption. We begin by extending the range
of interactions, such that wire j can now interact with neighbours
up to index j £ 2. The relevant disturbing function of the discrete

system is then:
Rj = Bjjn;n; + Bjj (ﬂj Mo+ -1 n}f)
+ B (77/ Mip 041 777) + Bj» (n,- nis
+1j-2 n?) + Bjji2 (nj Mipa +0j12 nj)- (48)

For the sake of this demonstration, let us assert that because
<« 1, all of the annuli in question are still in sufficient proximity
to one another for the « — 1 limit to apply. Then, we can crudely
assume that most of the variation among the coefficients B will stem
from evaluation of the Laplace coefficient at different values of «.
Thus, setting o« = 1/(1 + B)”, where v is an integer that indexes the
interaction length (i.e. j;j = v coupling), we have
abip~ s + OB, (49)

1 +v)mp?
which y1elds Bjji P (2/5) Bjj 41-

Following up on the same procedure as before, we deduce the

equation of motion for wire j:

dn; nimj 1 R
A - = |n; i i
dr dn M B2 5 )1 T

2
+ 5 (Vlj—z + 77j+2) } . (50)
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The new terms give rise to a higher order derivative, such that the
continuum limit takes the form:

on [13 9% )2 'y

— Rl | — = -— . 51
o O S o TP 55, D
Continuing this procedure to j + 3 yields

on [22 9’ , 8 'y ! 9%y

— Rl | — = —— —— 52
o TP S a2 TP 5 TP 5o ©2)
and so on.

The general form of the above expression is reminiscent of
boundary layer analysis of fluid mechanics (see e.g. section IV of
Landau & Lifshitz 1959), and elucidates that as long as the char-
acteristic wavelength of interest exceeds the gravitational softening
length by a significant margin (which is an implicit assumption of
the continuum limit), the contributions due to higher order deriva-
tives can be safely neglected. In other words, the functional form of
the eigenstates derived within the framework of the nearest neigh-
bour interactions represents a perfectly adequate approximation to
the true long-wavelength secular modes of a globally coupled sys-
tem. Intuitively, the validity this approximation within the context of
low wavenumber perturbations can be understood as a consequence
of the fact that if 27t/k > B, the complex field 1 does not change
dramatically on scales comparable to the softening length, meaning
that its relevant features are encapsulated within its curvature to a
good approximation.

3.2.5 Collective effects

Although the proceeding analysis demonstrates that eigenmodes
deduced from Schrodinger’s equation (33) apply even when global
effects are taken into account (we will check this assertion more
thoroughly below), it also illuminates a key shortcoming of the local
treatment of the dynamics. Namely, equations (51) and (52) clearly
suggest that the eigenfrequencies obtained within the context of the
nearest-neighbour approximation severely underestimate the true
evolution rates of the disc’s normal modes, since each incremental
increase in interaction range significantly boosts the effective value
of w;. Accordingly, let us now alleviate this limitation and compare
the resulting formulae with a complete Lagrange—Laplace model of
a disc.

The specific goals of the following calculations are two-fold.
First, by initializing the full Lagrange—Laplace solution in eigen-
states derived from the Schrodinger’s equation and examining the
resulting temporal evolution, we will determine how close these
functions are to the true normal modes of the fully coupled system.
That is, if the coherence of the initial condition is retained to a good
approximation as time marches forward, the initial state is an eigen-
function of the system. On the other hand, if the inclinations oscillate
with a large amplitude, then the assumed initial condition cannot
be considered a stationary mode of the disc. Secondly, we will ob-
tain the nodal regression rates corresponding to eigenfunctions (47),
fully accounting for long-range gravitational interactions. For suc-
cinctness, we will obtain the analytic expression for the evolution
rates first.

In order to properly describe collective effects within the system,
let us return to a discrete representation of the dynamics of wire j,
accounting for the potential of the full disc. The appropriate form
for the disturbing function reads (Murray & Dermott 1999):

N

1
R; = 5 Bii (P} +4)+ Z Bi(pj px + 4 q1)- (53)
k=1, ]2k

Secular discs 5077

Recalling the definitions of p and g from equations (22), the expres-
sion for the longitude of ascending node is:

Q = arctan <p> . 54)
q

Since we are interested in the the evolution rate of a specific
mode, we can readily assume that a common phase (modulo sign)
is shared by all constituent annuli within the disc, and its rate of
change is independent of its value. Thus, without loss of generality
we can set p = 0 everywhere, which yields a simplified expression
for the derivative:

de _ 1 d[)_,‘ _ 1 aRJ
e |, 4 d g, g
N
=—|Byai+ D Bia |- (55)
k=1, j#k

In similarity with equations (25), the interactions coefficients take
the form:

N
n; my _ ~(1
Bjj=—— Z o ki B {orji)
k=1 %k
I’lj my _ =(1)
By = 2 g Yk byplo it (56)

where we have adopted the notation of Murray & Dermott (1999)
to set oy = (a;/ax), @ = (aj/ay) if j < k (external perturbation)
and aj, = (aj/ay), & = 1 if j > k (internal perturbation). To this
end, note that since we are no longer working within the confines
of nearest neighbour interactions, expression (32) does not apply as
a valid estimate of Bgl/)z, meaning that Laplace coefficients must be
evaluated at different values of o explicitly’.
Substituting the  — 0 solution (47) for ¢, i.e.

gt = cos (eglog (Z;)) (57)

and taking the continuous limit, the scaled precession rate at a given
semimajor axis a is given by

dQ af (O FP%ala\ g fal .
—_ = — — | < b3/2 b da
dr , 4\ Jan M\ a a
X _ cos | Zlog | &
/uaiﬂ/z) afa {0) a ! da
- —| = - a
M\a) 7 a ( (

. N2 | cos <[glog<:ﬂ)>
/““‘ Yafa 20 a da
- | Mm\a 3/2Y & a
a(1+8/2) a a < N ))
Aout S S ~ 2 =
+ / Toozara) potaty), (58)
aa+py M\ a a

7 For computational ease, it is useful to express E%l/)z in terms of standard
elliptic integrals (Hahn 2003).
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where the Laplace coefficients (equation 31) are evaluated setting
o to the semimajor axis ratio inside the curly brackets, and the
hatted and barred quantities are evaluated at @ and a, respectively.
Assuming perfect rigidity of the mode under consideration, we
assert that the true evolution rate is given by the average of the
regression rates of the constituent annuli of the disc, weighted by
their angular momentum deficit:

w40\ Ta ¢ i
o)) Z/am <dt>[1\;\/gM&C082 <Zlog (;))d&

~ —1
Aout Z’\ e A
x 24 JoMacos | ZTrog [ L) )da] . 59
ain M [, ap

In order to evaluate the validity of the above equations quantita-
tively, we compare the derived analytic theory to the full Lagrange—
Laplace solution of a disc comprised of N = 100 discrete annuli®.
Specifically, adopting a softening parameter of 8 = 1073 as in
(Kocsis & Tremaine 2011) and following the recipe outlined in
Section 3.1, we initialize the disc in a ‘pure’ state given by equation
(47). Obtaining the solution via the standard approach of matrix di-
agonalization (see e.g. chapter 7 of Morbidelli 2002), we examine
the extent to which the disc remains in the prescribed stationary
state, and compare the global evolution rate to that dictated by
equation (59).

Fig. 5 shows the comparison between the discrete Lagrange—
Laplace model of the disc and the analytical theory described above
for £ =0, 1, ..., 5. Specifically, the left-hand panel of the figure
depicts the oscillations amplitude of inclination as a function of
semimajor axis of the full Lagrange—Laplace system (red dots)
over many secular precession time-scales. The right panel depicts
temporal evolution of the node, wherein values corresponding to all
orbital radii are plotted together as a function of time.

Clearly, the eigenstates derived from Schrodinger’s equation pro-
vide an adequate approximation to the global behaviour of the simu-
lated system, since the full solution never drifts away from its initial
condition (purple curves on the left-hand panel), and instead only ex-
periences low-amplitude oscillations around the derived eigenfunc-
tions. Moreover, the analytically computed evolution rates (purple
lines on the right panel) also match the discrete solution well. Ac-
cordingly, we conclude that a linear superposition of normal modes
of the form:

l
Ne X cp exp {1 wy t} cos <T£[p> (60)

provides a simple and easily computable avenue towards evaluating
the evolution of geometrically thin, self-gravitating discs on secular
time-scales.

4 PERTURBED DISCS

In the last section, we analysed the dynamics of isolated self-
gravitating discs, in the continuum limit of the Lagrange-Laplace
secular theory. While examples of such cloistered systems surely ex-
ist in nature, real astrophysical discs often reside in phenomenolog-
ically rich, dynamic environments, and can be subject to substantial

8 Despite being analytic in nature, the actual solution of a Lagrange—Laplace
system with the aid of computer algebra becomes computationally taxing
for N substantially greater than ~100.

external (or internal) perturbations. Extending the formalism de-
veloped above to account for a select class of such perturbations
is the primary goal of this section. For definitiveness, here we re-
strict ourselves to considerations of external gravitational forcing,
although it is understood that other extrinsic effects (e.g. radiative
stripping, turbulent infall of material, etc.) can also influence astro-
physical discs’ long-term evolution. As in the proceeding section,
we concentrate on strictly secular perturbations.

As already discussed above, secular interactions generically arise
as a consequence of the orbit-averaged gravitational field of bound
companions. Within the context of circumstellar discs, such com-
panions can be binary stars (Batygin 2012; Lai 2014), or massive
planets (Matsakos & Konigl 2017; Nesvold et al. 2017). Under ap-
propriate conditions, the ambient potential of a stellar birth cluster
can also be modelled in this manner. In the Galactic centre, pertur-
bations due to a molecular torus residing at ~1.5-7 pc (Christopher,
Scoville & Stolovy 2005) as well as the gravitational effects of a pu-
tative intermediate-mass black hole residing outside the stellar disc
(Yu et al. 2007) can be treated within the secular framework. Given
the well-known limitations of Lagrange—Laplace theory, we do not
aim to provide a complete description of secular dynamics that cov-
ers every imaginable regime. Instead, here we focus on deriving a
quantitative measure of the disc’s tendency towards deformation in
face of external excitations.

4.1 Secular forcing

Consider a perturbing companion of mass m’, residing on an arbi-
trarily inclined orbit with eccentricity ¢’ and semimajor axis a’ >
aou- Envision that the angular momentum of the companion greatly
exceeds the angular momentum budget of the disc, such that the
back-reaction of the disc upon the companion can be neglected.
Under these assumptions, we may orient the coordinate system to
coincide with the plane of the companion’s orbit (such that i’ = 0)
and expand the gravitational potential in powers of the semimajor
axis ratio’, (a/a’) (Kaula 1962). To quadrupole order'’, the secular
disturbing function associated with the orbit-averaged gravitational
potential of the companion has the form (Mardling 2010):

3
rtmla) L (g3 (ded=2
M\ 1 —e? 2 2

+ ?ez sin?(i) cos(2(w — Q))] ) (61)

The harmonic term that appears on the second line of equation
(61) governs the Kozai-Lidov effect (Lidov 1962; Kozai 1962),
a flavour of dynamical evolution that can manifest as coupled
large-scale oscillations of eccentricity and inclination. A number
of recent works (Martin et al. 2014; Fu et al. 2015; Nesvold et al.
2017; Zanazzi & Lai 2017) have studied the Kozai-Lidov effect
pertaining to astrophysical discs, and have shown that it can indeed

9 Unlike the ‘literal’ expansion of the disturbing function employed within
the framework of the Lagrange—Laplace theory (which assumes small eccen-
tricities and inclinations while placing no restrictions upon the semimajor
axis ratio), expansion of the potential in terms of the semimajor axis ratio as-
sumes that (a/a’) < 1 but places no restrictions on the orbital eccentricities
and inclinations.

10 For an extensive exploration of secular dynamics governed by higher
order terms, see e.g. Naoz et al. (2013); Li, Naoz & Holman (2014).
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Figure 5. Comparison between a full Lagrange-Laplace model of a self-gravitating disc (red dots) and analytical theory based upon the continuum treatment
presented herein (purple lines). The left panels depict stationary £ = 0, 1, ..., 5 inclination modes of the disc as a function of semimajor axis, and the right
panels show the corresponding rates of nodal regression. Over secular time-scales, the discrete solution experiences low-amplitude oscillations around its
assumed initial conditions, but nevertheless remains approximately confined to the derived eigenstates of the system. In this example, we adopted a gravitational
softening parameter of g = 1073, and considered a disc composed of N = 100 wires. The disc was taken to orbita M = 1 M(; star, comprise mgisc = 1 Mgy
in total, and extend from aj, = 1 AU t0 aou = (1 + )N ~ 1.1 AU. Clearly, the agreement between analytical theory and the discrete model is satisfactory,

especially for low-frequency modes.

operate under specific conditions. Here, we assume that these condi-
tions are not satisfied. Practically, this assumption can be translated
to a restriction on the mutual disc-companion inclination (namely
i < arccos(+/3/5)). However, we also note that even in discs whose
inclination exceeds this critical value, the Kozai effect is typically
suppressed due to self-induced regression of the argument of peri-
helion (Batygin et al. 2011; Xiang-Gruess & Papaloizou 2014). In
such instances, this term can be readily averaged away and discarded
from the disturbing function.

Defining the scaled Poincaré action-angle variables (Morbidelli
2002)

(62)

7= M(l - cos(i)) ~1—cos(i) Z=-Q,

and assuming that e < 1 as before, the disturbing function (61)
becomes

3 - ~
! 1-3Z+432%)2
L —+3/ ) (63)
AM\a VI—e?
The resulting nodal regression rate is given by
3
dQ@ 0oR 3m’
b V- () (64)
dr 0Z 4M\a /1= 2

where we have taken the mutual inclination to be small enough for
the approximation cos (i) ~ 1 to hold.

Equation (64) describes phase rotation, the rate of which is in-
dependent of 5. Thus, carrying out the analysis outlined in the
previous section, it is immediately evident that this effect can be
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incorporated into Schrodinger’s equation as a potential term. Re-
calling the definition of the logarithmic coordinate, p (equation 15),
we have:
on , 0%

1o 5 = 0, ﬁ +w; o exp(Bp/2)n. (65)
Maintaining the definitions outlined in Section (3.1), in the above
expression, we have scaled the perturbation constant by the param-
eters relevant to the inner edge of the disc:

’ g M Ain 1
[0} — | —- (66)
4 M a’ /T— &2

In the context of quantum mechanics, a Schrodinger’s equation with
an exponential potential constitutes a rudimentary model for molec-
ular interactions (Atabek et al. 1982; Amore & Fernandez 2008).
Therefore, equation (65) implies that gravitational perturbations ex-
erted upon a quasi-Keplerian astrophysical disc can be understood
within a framework that is closely related to quantum scattering
theory.

Employing the standard separation of variables (40) once again,
we obtain the following equation for the stationary states:

%1,

- expBp/2) L + we Ly + w; — Y =0. 67)
A solution to equation (67) was first identified!' by Ma (1946),
under the condition that Z, must vanish at the origin (see also
Bargmann 1949). Although a useful starting point, Ma’s solution
is not directly applicable to secular disc dynamics. Instead, the
boundary conditions relevant to the problem at hand are obtained
using the procedure outlined in Section 3.2.2:

614

—~ =8 ( o exp(3[,/2)> I (68)

p=L

Together, equations (67) and (68) admit an analytic solution,
which is expressed in terms of the following quantity

1+4l
3 w;
4 [w exp(3p/2)
. XW”’*‘( p/>
3 w; 3 w;
4 o exp(3p/2)
x. ( /PP/>
3 ; 3 w;
, 4 |o
X 2,8(&)5—(0).)(.%,\/g 3 ;;

4 |
+ Voo X‘g’\/jjf—l<3 )

A=T

wj

' Through a change of variables, equation (67) can be turned into Bessel’s
equation.

x 4 |
43’ “é +1 3 wj

2B — )X aaylcd
X - a | =4/ —
e 7471\/77 3V o
n [y - 4 o

wre 7741\/%_' 3V wi

—1
4 |
X 4 jar| =4 — , 6

SG)

where I' is the Gamma function and X is the modified Bessel
function of the first kind. Suitably, the expression for Z, reads:

Zo = A exp [— 1 arctan <§;Ei;>

It is noteworthy that even though the expression for A itself is
comprised of Bessel functions with imaginary indexes, they are
summed together in such a way as to render Z, purely real (Bocher
1892).

Unfortunately, the quantization condition that defines the fre-
quencies w, for equation (67) is exceedingly cumbersome. Thus,
here we restrict ourselves to reporting its approximate form, which
is attained by expanding the full expression in B to zeroth order:

x - ﬂ ' exp(3L/2)
_1_47’\/% 3 w;

v, 4 o Py 4 o
AsvEaVe ) TrsvEa GV
4 [ exp(3L/2)
X | o4 ——m—
* 14?’\/“f<3 w;

4 | 4 o
X, /o -1/ — Xy o | o4 —
43’\/”";”4-1(3 wi>+ 43’\/0)?_]<3 w[)

) Y- 4 o exp(3£/2)
T\/«Tﬁ 3

4 o exp(3£/2)
2O 3

4 | 4 |
X oy - — X oy —
% - ﬁ7 (3 wi) * 14;’\/)f< O)i)
4 41 [wy
l——,/—|T|1+—,/—| =0. 71

‘We note that this condition is exact in the limit of a razor-thin disc,
and for (o' /w;) of order unity or less, the zeroes of this function are
well approximated by w;/w; ~= (£ /L),

Recall from Section 3 that the ground state of an unperturbed
disc has ¢ = 0, which corresponds to n = const. everywhere. In
presence of external forcing, this simple solution no longer holds,

(70)

W |

S
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Figure 6. Ground state of a perturbed self-gravitating disc, at various sec-
ular forcing strengths. As the magnitude of differential precession induced
by the external perturber is increased (which corresponds to an increasing
v), the ground state of the disc becomes progressively more deformed. Ac-
cordingly, a flat, uniformly inclined system is replaced by a globally warped
disc. Deformation amplitude of order the unperturbed mode amplitude is
attained for w ~ ' exp(3L£/2). This condition motivates the criterion for
the gravitational rigidity of astrophysical discs presented in Section 4.2.

as the nodal regression induced by the companion can lead to a
prominent distortion of the lowest energy state. Importantly, a con-
trolling parameter that determines the extent of this distortion is
v = (o /w;) exp(3L/2). Physically, this ratio corresponds to the
relative magnitudes of the differential precession induced by the
companion and nodal regression facilitated by self-gravity.

Forgoing collective effects for the moment, Fig. 6 depicts the
lowest frequency mode (as dictated by equation 71) for various pro-
portions of the aforementioned parameter v. As may be intuitively
expected, the lowest energy eigenfunctions become progressively
deformed as the external forcing strength is increased. Moreover,
it is worth noting that the extent of deviation away from the un-
perturbed solution becomes comparable to the amplitude of the
unperturbed solution when v ~ 1. We will revisit this notion again
below.

4.2 Gravitational rigidity

A key question that can be addressed using the framework derived
in the previous subsection is: ‘under what conditions, will a disc
develop significant structure due to external perturbations?” How-
ever, to answer this question quantitatively, we must re-examine the
extent to which the ground state of the perturbed system is deformed
by external forcing, accounting for collective effects within the disc.
Fig. 6 shows that to a fair approximation, the functional form of
the ground-state of a secularly forced disc can be represented as a
superposition of £ = 0 and £ = 1 states of the unperturbed system:

1+ € cos <27;O)] (72)

In this approximation, the deviation away from strict coplanarity, €,
fully encapsulates the strength of external perturbation. The key is
thus to compute its magnitude directly from the parameters of the
system.

Following the discussion outlined in Section 3.2.5, we recall that
the evolution rate of the unperturbed ¢ = 1 mode, which we denote as
@), 1s given by equations (58) and (59). Qualitatively, this frequency
can be interpreted as the rate of angular momentum redistribution

Ty =~ co
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within the disc, facilitated by self-gravity. The resulting value should
be compared with the rate of differential nodal regression induced
upon the system by the external companion:

32

— , Aout

O =w —1]. (73)
din

Guided by the findings of the previous subsection, we argue that
the gravitational rigidity of the system is characterized entirely by
the relative importance of these two effects, and assert that the
dimensionless parameter € is given by their ratio. Explicitly, in
terms of physical parameters of the system, the expression reads:

/ Gout gM Z()«/a()& ) <7T < a >>
€= = ————cos” | < log | —

S

&

ain 4a M L ap
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We remind the reader that encoded in this equation (as well as
in the form of the solution 69 and 70 itself) is the assumption of
a ¥ o 1/4/a surface density profile, meaning that for a different
radial dependence of X, the rigidity criterion would take on a quan-
titatively distinct form.

In order to check that equations (72) and (74) truly represent an
adequate approximation to the lowest energy state of a secularly
perturbed system, we once again employ the discrete Lagrange—
Laplace model of the disc shown in Fig. 5. Subjecting the disc to
secular perturbations arising from a m’ = 1072 M perturber residing
on a circular orbit at (aj,/a’) = 1/3, we tune the disc mass to
correspond to € = 0.01, 0.1, 0.3, and 1, contrasting our analytic
results with the full model at each iteration. A variant of Fig. 5
depicting this comparison is shown in Fig. 7. As is made evident by
the essentially flat nature of the inclination ground state depicted
on the left-hand panels of Fig. 7, and the coherence of ascending
nodes shown on the right-hand panels, discs characterized by € « 1
maintain near-perfect gravitational rigidity, and show only minimal
deformation in face of external forcing.
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Figure 7. Ground states of an externally perturbed self-gravitating disc, corresponding to different values of the deformation parameter, €. As in Fig. 5, we
consider the dynamics of a narrow disc with 8 = 1073, composed of N = 100 massive wires. In the depicted calculations, however, this disc is perturbed by
am = 10~2M companion residing at @’ = 3 au on a circular orbit. In each panel, the disc is initialized in a state given by equation (72), and its mass tuned
via equation (74) to give the desired value of €. As expected from theoretical arguments, the gravitational rigidity of the system is ensured for ¢ < 0.1. When
this condition is satisfied, the disc’s longitude of ascending node executes a slow regression with respect to the plane defined by the companion’s orbit. For
reference, the characteristic value of the Toomre’s Q within the disc is quoted on the right-hand panel for each realization.

Qualitatively speaking, the capacity of a disc to retain its un-
perturbed form when € < 1 stems from nothing other than adia-
batic invariance of the system’s actions (Henrard 1993). Suitably,
€ itself represents a readily computable measure of the extent to
which the emergent quasi-integrals are conserved. Accordingly, the
propensity of self-gravitating near-Keplerian discs to deform under
extrinsic forcing is fully encapsulated within this parameter. Just as
Toomre’s Q 2 1 criterion corresponds to a disc that is stable against
self-gravitational fragmentation, a perturbed disc with € « 1 is
stable against external secular excitation. In other words, systems
with € substantially smaller than unity will behave as gravitationally
rigid bodies.

5 DISCUSSION

Although the time-dependent Schrodinger equation is often thought
of as a mathematical description that is reserved for quantum me-
chanics alone, its non-linear counterpart (equation 10) appears in
numerous instances of classical physics. Examples of such contexts
include small-amplitude (fluid) gravity waves, Langmuir plasma
waves, and non-linear optics (Agrawal 2013; Bellan 2013). In this
work, we have shown that the linear Schrodinger equation is also
keenly relevant to the long-term evolution of astrophysical discs
and constitutes a continuum description of the secular dynamics of
stable self-gravitating systems. Remarkably, this result stems from
the well-known Lagrange—Laplace perturbation theory of celestial
mechanics, the origins of which were established over two centuries
ago.

Downl oaded MM%A%S‘:‘?/S&QQJQESQJ%{%@‘QJn$r)as/ article-abstract/ 475/ 4/ 5070/ 4817553

by California Institute of Technol ogy user
on 05 March 2018

As a perturbative model, the Schrodinger equation lends easy
access to orbital evolution that unfolds on time-scales that greatly
exceed the longest Keplerian period of the system, but are nev-
ertheless shorter than its physical lifetime. While the resulting
characterization of long-term angular momentum transfer is not
readily attainable by other (non-secular) methods, it is of key im-
portance to a judicious interpretation of the observed structure of
astrophysical discs. Simultaneously, we emphasize that because of
the orbit-averaged framework within which the theory was con-
structed, it is not designed to capture the full richness of dynamical
phenomena that may ensue within self-gravitating quasi-Keplerian
systems!'Z.

By virtue of being exactly solvable, Schrodinger’s equation pro-
vides an enthralling reduction of the full solution of the gravita-
tional N-body problem. Within the context of this description, the
eigenstates derived from Schrodinger’s equation translate to nor-
mal modes of quasi-Keplerian discs, and the physical interpretation
of radially travelling inclination pulses corresponds to propagation
of nodal bending waves (Binney & Tremaine 1987). The derived
formalism further allows us to formulate a measure of the gravita-
tional rigidity of near-Keplerian systems, subject to extrinsic sec-
ular forcing. The resulting € < 1 stability criterion (equation 74)

12 For example, spiral density waves that cause the central object to be dis-
placed from the centre of mass and rely upon the resulting indirect potential
to further amplify their magnitude (Adams et al. 1989) are not captured in
our model.



quantifies the response of self-gravitating discs to external pertur-
bations, and compliments Toomre’s Q 2 1 stability criterion for
self-gravitational fragmentation.

In light of our model’s simplicity, it is important to keep in mind
that Schrodinger’s equation only provides an adequate description
for the angular momentum exchange within self-gravitating discs
in a specific parameter regime (i.e. sufficiently low eccentricities
and inclinations, small aspect ratio, etc.). That is to say that the re-
duction of 6N non-linear ordinary differential equations to a single
linear partial differential equation necessarily entails some approx-
imations. As a result, the outlined theory cannot serve as a general
replacement for more complex numerical simulations (Touma et al.
2009). Instead, our analytical model can be meaningfully used to
provide qualitative context for numerical results.

There exist numerous ways in which our model can be extended.
As afirst step, it is straightforward to generalize the derived formal-
ism to account for arbitrary radial dependence of the surface density
profile, and to lift the assumption of constant aspect ratio within the
disc. While of considerable practical use, these generalizations will
endow the fundamental frequency w; with a dependence upon the
semimajor axes, compromising the applicability of simple solutions
(such as that outlined in equation 47) to the governing Schrodinger-
like equation.

Another curious extension of our model lies in incorporation of
non-linearity. As already mentioned in Section 2, adding non-linear
action terms to the governing Hamiltonian yields the non-linear
variant of Schrodinger’s equation in the continuum limit. Impor-
tantly, such terms arise naturally in the secular disturbing function
at fourth order in eccentricities and inclination (Murray & Dermott
1999), and can yield significant coupling among the two degrees of
freedom (see e.g. Batygin et al. 2015). Simultaneously, it is worth
noting that adding non-linear terms to the governing Hamiltonian
turns the description of self-gravitating discs into a chain of an-
harmonically coupled oscillators — a system closely related to the
Fermi—Pasta—Ulam lattice (see Ford 1992 for a review). As a con-
sequence, it is reasonable to speculate that the resulting evolution
will be satisfied by breather solutions, and that Fermi—Pasta—Ulam
recurrence can occur in self-gravitating discs.

Because we have considered purely gravitational coupling in this
work, the obtained formulae are only applicable to particle discs,
formally speaking. Although the strictly gravitational picture can in
some cases serve as a good approximation of a hydrodynamic disc'3
(see e.g. Fragner & Nelson 2010; Batygin 2012), a comprehensive
theory for fluid disc evolution must include an account for internal
forces. To this end, Ogilvie (2001, 2006) has demonstrated that the
dynamics of a fluid disc subject exclusively to pressure forces (i.e.
with negligible viscosity and self-gravity) can be understood within
the framework of a non-linear variant of Schrodinger’s equation
(see also Barker & Ogilvie 2016). Correspondingly, fusing such
formalism with the results developed herein may provide a viable
way to extend our theory to simultaneously account for gravitational
and hydrodynamic effects.

We conclude this work with a brief discussion of perturbations
exerted upon astrophysical discs. As discussed in Section 4, the
flavour of interactions considered in this manuscript represents only
a subset of the full range of possibilities. For example, carrying out
the expansion of the secular disturbing function (equation 61) to
higher order (Naoz et al. 2013) in the semimajor axis ratio can in-

13 Generically, it is reasonable to neglect internal pressure forces if
VG X a > cs, where ¢ is the speed of sound (Tremaine 2001).

Secular discs 5083

troduce purely real forcing terms that are independent of 7 into the
governing equations. Along similar lines of reasoning, inclination
damping can be modelled as a purely real diffusion term within
this framework. On the contrary, stochastic effects, such as those
arising from passing stars or turbulent infall of disc material can
be simulated by adding appropriately modulated noise to the exte-
rior boundary condition (Spalding et al. 2014; Li & Adams 2015).
Taken together, incorporation of aforementioned effects constitutes
a intriguing avenue towards further development of the model and a
more complete characterization of the long-term evolution of self-
gravitating discs.
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